Learn More
There has been a growing interest in automatic age estimation from facial images due to a variety of potential applications in law enforcement, security control, and human-computer interaction. However, despite advances in automatic age estimation, it remains a challenging problem. This is because the face aging process is determined not only by intrinsic(More)
As face recognition applications progress from constrained sensing and cooperative subjects scenarios (e.g., driver's license and passport photos) to unconstrained scenarios with uncooperative subjects (e.g., video surveillance), new challenges are encountered. These challenges are due to variations in ambient illumination, image resolution, background(More)
Demographic estimation entails automatic estimation of age, gender and race of a person from his face image, which has many potential applications ranging from forensics to social media. Automatic demographic estimation, particularly age estimation, remains a challenging problem because persons belonging to the same demographic group can be vastly different(More)
For safety purposes, railroad tracks need to be inspected on a regular basis for physical defects or design noncompliances. Such track defects and non-compliances, if not detected in a timely manner, may eventually lead to grave consequences such as train derailments. In this paper, we present a real-time automatic vision-based rail inspection system, with(More)
In this paper, we present our latest research engagement with a railroad company to apply machine vision technologies to automate the inspection and condition monitoring of railroad tracks. Specifically, we have proposed a complete architecture including <i>imaging setup</i> for capturing multiple video streams, important <i>rail component detection</i>(More)
In this paper, we present a real-time automatic vision-based rail inspection system, which performs inspections at 16 km/h with a frame rate of 20 fps. The system robustly detects important rail components such as ties, tie plates, and anchors, with high accuracy and efficiency. To achieve this goal, we first develop a set of image and video analytics and(More)
Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand(More)