Learn More
A long-standing challenge to evolutionary theory has been whether it can explain the origin of complex organismal features. We examined this issue using digital organisms--computer programs that self-replicate, mutate, compete and evolve. Populations of digital organisms often evolved the ability to perform complex logic functions requiring the coordinated(More)
Darwinian evolution favours genotypes with high replication rates, a process called 'survival of the fittest'. However, knowing the replication rate of each individual genotype may not suffice to predict the eventual survivor, even in an asexual population. According to quasi-species theory, selection favours the cloud of genotypes, interconnected by(More)
Avida is a software platform for experiments with self-replicating and evolving computer programs. It provides detailed control over experimental settings and protocols, a large array of measurement tools, and sophisticated methods to analyze and post-process experimental data. We explain the general principles on which Avida is built, as well as its main(More)
Legged robots show promise for complex mobility tasks, such as navigating rough terrain, but the design of their control software is both challenging and laborious. Traditional evolutionary algorithms can produce these controllers, but require manual decomposition or other problem simplification because conventionally-used direct encodings have trouble(More)
Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and(More)
To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of(More)
—This paper investigates how an evolutionary algorithm with an indirect encoding exploits the property of phenotypic regularity, an important design principle found in natural organisms and engineered designs. We present the first comprehensive study showing that such phenotypic regularity enables an indirect encoding to outperform direct encoding controls(More)
HyperNEAT, a generative encoding for evolving artificial neural networks (ANNs), has the unique and powerful ability to exploit the <i>geometry</i> of a problem (e.g., symmetries) by encoding ANNs as a function of a problem's geometry. This paper provides the first extensive analysis of the sensitivity of HyperNEAT to different geometric representations of(More)
2190 O ne of the most important features of biology is the ability of organisms to persist in the face of changing conditions. Consider the remarkable fact that every organism alive today is the product of billions of generations in which its progenitors, without fail, managed to produce progeny that survived to reproduce. To achieve this consistency,(More)
Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. This abstract summarizes a previous publication in which we used Avida, a well-studied artificial life platform, to investigate the ability of natural selection to(More)