Learn More
Acute isolation of hippocampal CA3 pyramidal cells using trypsin produces neurons which respond to kainate and quisqualate but not N-methyl-D-aspartate (NMDA). Incubation of 6- to 12-day-old cultured hippocampal neurons or slices of pyriform cortex with trypsin irreversibly removes the NMDA responses normally present without significant effect on responses(More)
Melatonin is a pineal hormone that regulates seasonal reproduction and has been used to treat circadian rhythm disorders. The melatonin 1a receptor is a seven- transmembrane domain receptor that signals predominately via pertussis toxin-sensitive G-proteins. Point mutations were created at residue N124 in cytoplasmic domain II of the receptor and the mutant(More)
Intracellular free Ca(2+) regulates diverse cellular processes, including membrane potential, neurotransmitter release, and gene expression. To examine the cellular mechanisms underlying the generation of circadian rhythms, nucleus-targeted and untargeted cDNAs encoding a Ca(2+)-sensitive fluorescent protein (cameleon) were transfected into organotypic(More)
Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs), have been observed in neurons of the suprachiasmatic nuclei (SCN), the site of the central mammalian circadian (~24-hour) clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual(More)
The effects of trimethyltin (TMT) on neurotransmitters, morphological changes and physiological activity of the hippocampus were studied. A single injection of TMT (8 mg/kg) decreased the high affinity uptake of glutamate (HA-Glu), which is a marker for glutamergic nerve terminals, after 7 days. The maximal reduction of HA-Glu was 42% and was obtained on(More)
A small number (<2%) of mammalian retinal ganglion cells express the photopigment melanopsin and are intrinsically photosensitive (ipRGCs). Light depolarizes ipRGCs and increases intracellular calcium levels ([Ca2+]i) but the signaling cascades underlying these responses have yet to be elucidated. To facilitate physiological studies on these rare(More)
Optic nerve stimulation evoked monosynaptic excitatory postsynaptic currents in suprachiasmatic nucleus neurons maintained in vitro. These currents were completely blocked by a combination of glutamate receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione and 4-aminophosphonovaleric acid. Stimulation of the ipsilateral or contralateral suprachiasmatic(More)
Intercellular communication between gamma-aminobutyric acid (GABA)ergic suprachiasmatic nucleus (SCN) neurons facilitates light-induced phase changes and synchronization of individual neural oscillators within the SCN network. We used ratiometric Ca(2+) imaging techniques to record changes in the intracellular calcium concentration ([Ca(2+)](i)) to study(More)
Glutamate released from retinohypothalamic tract (RHT) synapses with suprachiasmatic nucleus (SCN) neurons induces phase changes in the circadian clock presumably by using Ca2+ as a second messenger. We used electrophysiological and Ca2+ imaging techniques to simultaneously record changes in the membrane potential and intracellular calcium concentration(More)
Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in(More)