Charles N. Allen

Learn More
Intracellular free Ca(2+) regulates diverse cellular processes, including membrane potential, neurotransmitter release, and gene expression. To examine the cellular mechanisms underlying the generation of circadian rhythms, nucleus-targeted and untargeted cDNAs encoding a Ca(2+)-sensitive fluorescent protein (cameleon) were transfected into organotypic(More)
1. Whole-cell recordings were made from 390 neurons of the suprachiasmatic nucleus (SCN) in horizontal brain slices during different portions of the circadian day. The locomotor activity of the rats was measured prior to the preparation of brain slices to insure that each rat was entrained to a 12 h-12 h light-dark cycle. 2. The mean input conductance was(More)
In mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed(More)
A small number (<2%) of mammalian retinal ganglion cells express the photopigment melanopsin and are intrinsically photosensitive (ipRGCs). Light depolarizes ipRGCs and increases intracellular calcium levels ([Ca2+]i) but the signaling cascades underlying these responses have yet to be elucidated. To facilitate physiological studies on these rare(More)
Neurons of the medial septal nucleus are important in regulating the physiological activity of the hippocampus. If intraseptal injection of putative neurotransmitter substances affects the turnover rate of hippocampal acetylcholine, then concomitant changes would be expected in the electrophysiologic activity of the hippocampus. A GABA agonist, muscimol,(More)
3-Nitropropionic acid (1 mM), which inhibits succinate dehydrogenase activity and reduces cellular energy, produces in the pyramidal cell layer of the hippocampal region CA1 a hyperpolarization for variable lengths of time before evoking an irreversible depolarization. Hyperpolarization is caused by an increased potassium conductance that is attenuated by(More)
Melanopsin-containing retinal ganglion cells (RGCs) project to the suprachiasmatic nuclei (SCN) and mediate photoentrainment of the circadian system. Melanopsin is a novel retinal-based photopigment that renders these cells intrinsically photosensitive (ip). Although genetic ablation of melanopsin abolishes the intrinsic light response, it has a(More)
Understanding the process of inducing T cell activation has been hampered by the complex interactions between APC and inflammatory Th1 cells. To dissociate Ag-specific signaling through the TCR from costimulatory signaling, rTCR ligands (RTL) containing the alpha1 and beta1 domains of HLA-DR2b (DRA*0101:DRB1*1501) covalently linked with either the myelin(More)
Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in(More)
Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs), have been observed in neurons of the suprachiasmatic nuclei (SCN), the site of the central mammalian circadian (~24-hour) clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual(More)