Learn More
Increasing numbers of plant-made vaccines and pharmaceuticals are entering the late stage of product development and commercialization. Despite the theoretical benefits of such production, expression of parasite antigens in plants, particularly those from Plasmodium, the causative parasites for malaria, have achieved only limited success. We have previously(More)
Development of a safe, effective and affordable malaria vaccine is central to global disease control efforts. One of the most highly regarded proteins for inclusion in an asexual blood stage subunit vaccine is the 19-kDa C-terminal fragment of merozoite surface protein 1 (MSP119). As production of vaccine antigens in plants can potentially overcome cost and(More)
Parasitaemia, the percentage of infected erythrocytes, is used to measure progress of experimental Plasmodium infection in infected hosts. The most widely used technique for parasitaemia determination is manual microscopic enumeration of Giemsa-stained blood films. This process is onerous, time consuming and relies on the expertise of the experimenter(More)
Low efficiency is often observed in the delivery of DNA vaccines. The use of superparamagnetic nanoparticles (SPIONs) to deliver genes via magnetofection could improve transfection efficiency and target the vector to its desired locality. Here, magnetofection was used to enhance the delivery of a malaria DNA vaccine encoding Plasmodium yoelii merozoite(More)
The absence of a validated surrogate marker for the immune state has complicated the design of a subunit vaccine against asexual stages of Plasmodium falciparum. In particular, it is not known whether the capacity to induce antibodies that inhibit parasite growth in vitro is an important criterion for selection of P. falciparum proteins to be assessed in(More)
The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP1(19)) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP1(19) is presented(More)
The bioinformatics software, Geneious, provides a useful platform for researchers to retrieve and analyse genomic and functional genomics information. However, the main databases that the software is able to access are hosted by NCBI (National Center for Biotechnology Information). The databases of EuPathDB (Eukaryotic Pathogen Database Resources), such as(More)
DNA vaccines offer cost, flexibility, and stability advantages, but administered alone have limited immunogenicity. Previously, we identified optimal configurations of magnetic vectors comprising superparamagnetic iron oxide nanoparticles (SPIONs), polyethylenimine (PEI), and hyaluronic acid (HA) to deliver malaria DNA encoding Plasmodium yoelii (Py)(More)
We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were(More)
Plasmodium falciparum is the causative agent of the most serious form of malaria. Although a combination of control measures has significantly limited malaria morbidity and mortality in the last few years, it is generally agreed that sustained control or even eradication will require additional tools including an effective malaria vaccine. Merozoite surface(More)