Charles M. Gaona

Learn More
R. Iris Bahar Erica A. Frohm Charles M. Gaona Gary D. Hachtel Enrico Macii y Abelardo Pardo Fabio Somenzi University of Colorado Department of Electrical and Computer Engineering Boulder, CO 80309 Abstract In this paper we present theory and experiments on the Algebraic Decision Diagrams (ADD's). These diagrams extend BDD's by allowing values from an(More)
High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles(More)
Language is one of the defining abilities of humans. Many studies have characterized the neural correlates of different aspects of language processing. However, the imaging techniques typically used in these studies were limited in either their temporal or spatial resolution. Electrocorticographic (ECoG) recordings from the surface of the brain combine high(More)
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive(More)
Selective attention allows us to filter out irrelevant information in the environment and focus neural resources on information relevant to our current goals. Functional brain-imaging studies have identified networks of broadly distributed brain regions that are recruited during different attention processes; however, the dynamics by which these networks(More)
Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from the sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the(More)
OBJECTIVE Electrocortical stimulation (ECS) has long been established for delineating eloquent cortex in extraoperative mapping. However, ECS is still coarse and inefficient in delineating regions of functional cortex and can be hampered by afterdischarges. Given these constraints, an adjunct approach to defining motor cortex is the use of(More)
OBJECTIVE To demonstrate the decodable nature of pediatric brain signals for the purpose of neuroprosthetic control. We hypothesized that children would achieve levels of brain-derived computer control comparable to performance previously reported for adults. PATIENTS AND METHODS Six pediatric patients with intractable epilepsy who were invasively(More)
Several scientists have proposed different models for cortical processing of speech. Classically, the regions participating in language were thought to be modular with a linear sequence of activations. More recently, modern theoretical models have posited a more hierarchical and distributed interaction of anatomic areas for the various stages of speech(More)
The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be(More)