Learn More
Migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that does not correlate with formula molecular weights, termed "gel shifting," appears to be common for membrane proteins but has yet to be conclusively explained. In the present work, we investigate the anomalous gel mobility of helical membrane proteins using a library of(More)
An inherent dilemma in the study of the structural biology of membrane proteins is that it is often necessary to use detergents to mimic the native lipid bilayer environment. This situation is of particular interest because the generation of high-resolution structures (through X-ray crystallography and solution NMR) has overwhelmingly relied upon(More)
Transfer of an aqueous-soluble peptide hormone or neurotransmitter such as [Met]- or [Leu]enkephalin (Tyr1-Gly2-Gly3-Phe4-Met5(Leu5)), to the lipid-rich environment of its membrane-embedded receptor protein may convert the peptide into a ("bioactive") conformation required for eliciting biological activity. We have examined by high-resolution nuclear(More)
Mutations in ClC-5 (chloride channel 5), a member of the ClC family of chloride ion channels and antiporters, have been linked to Dent's disease, a renal disease associated with proteinuria. Several of the disease-causing mutations are premature stop mutations which lead to truncation of the C-terminus, pointing to the functional significance of this(More)
Myelin basic protein (MBP) isolated from bovine white matter is obtained as a mixture of molecules which can be separated by cation-exchange chromatography at basic pH into three or more charge isomers. The three principal charge isomers of the microheterogeneous myelin basic protein have been isolated, and compared individually by high-resolution H NMR(More)
Although the chains of amino acids in proteins that span the membrane are demonstrably helical and hydrophobic, little attention has been paid toward addressing the range of helical propensities of individual amino acids in the non-polar environment of membranes. Because it is inappropriate to apply soluble protein-based structure prediction algorithms to(More)
Helix-helix interactions play a central role in the folding and assembly of integral α-helical membrane proteins and are fundamentally dictated by the amino acid sequence of the TM domain. It is not surprising then that missense mutations that target these residues are often linked to disease. In this review, we focus on the molecular mechanisms through(More)
The distribution of amino acids in the transmembrane segments and flanking regions of 115 human type I single span (amino terminus extracellular and carboxyl terminus cytosolic) plasma membrane proteins was found to be non-random. In this sample, Ile was preferentially localized to the amino-terminal region of the hydrophobic transmembrane segments,(More)