Learn More
We developed an algorithm for calculating habitat suitability for seagrasses and related submerged aquatic vegetation (SAV) at coastal sites where monitoring data are available for five water quality variables that govern light availability at the leaf surface. We developed independent estimates of the minimum light required for SAV survival both as a(More)
Submersed aquatic vegetation (SAV) is an important component of shallow water estuarine systems that has declined drastically in recent decades. SAV has particularly high light requirements, and losses of SAV have, in many cases, been attributed to increased light attenuation in the water column, frequently due to coastal eutrophication. The desire to(More)
This paper reports measurements of absorption and scattering coefficients in relation to standard water quality measurements in the St. Johns River (Florida, USA), a blackwater river in which phytoplankton chlorophyll and non-algal particulates as well as colored dissolved organic matter (CDOM) contribute substantially to the inherent optical properties of(More)
Spectral diffuse attenuation coefficients were measured in the Rhode River and Chesapeake Bay, Maryland, on 28 occasions in 1988 and 1989. The model of Kirk was used to extract scattering and absorption coefficients from the measurements in waters considerably more turbid than those in which the model was previously applied. Estimated scattering(More)
Using a calibrated bio-optical model we determined that the optical water quality conditions in several nitrogen-impaired embayments and in one unimpaired system were within the range of values known to support eelgrass growth. We also used the model to identify a range of light requirements for eelgrass (Zostera marina). Higher eelgrass light requirements,(More)
In the eastern Canadian arctic the photosynthesis-irradiance curves of phytoplankton from the 50% and 1% light levels differ mainly in their susceptibility to photoinhibition. The photoinhibition parameters of deep populations and the intensity of the deep chlorophyll maximum were correlated with N2, the bulk stratification parameter of the water column.(More)
A series of three mathematical procedures is derived to discriminate the light absorption by phytoplankton, colored dissolved organic matter, and nonpigmented particulates in waters in which absorption is dominated by factors other than phytoplankton (i.e., case 2 waters). The procedures utilize normalized absorption cross-sectional spectra of the(More)
In coastal ecosystems with long flushing times (weeks to months) relative to phytoplankton growth rates (hours to days), chlorophyll a (chl-a) integrates nutrient loading, making it a pivotal indicator with broad implications for ecosystem function and water-quality management. However, numerical chl-a criteria that capture the linkage between chl-a and(More)
A series of three mathematical procedures is derived to discriminate the light absorption by phytoplankton, colored dissolved organic matter, and nonpigmented particulates in waters in which absorption is dominated by factors other than phytoplankton (i.e., case 2 waters). The procedures utilize normalized absorption cross-sectional spectra of the(More)
Ecosystem engineers are species that alter the physical environment in ways that create new habitat or change the suitability of existing habitats for themselves or other organisms. In marine systems, much of the focus has been on species such as corals, oysters, and macrophytes that add physical structure to the environment, but organisms ranging from(More)