Charles L. Armstrong

Learn More
A synthetic green fluorescent protein (GFP) gene (pgfp) was constructed to improve GFP expression in plants. Corn and tobacco protoplast transient assays showed that pgfp gave about 20-fold brighter fluorescence than the wild-type gene (gfp). Replacement of the serine at position 65 with a threonine (S65Tpgfp) or a cysteine (S65Cpgfp) yielded 100- to(More)
Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the(More)
The frequency of initiation of friable, embryogenic callus from immature embryos of the elite maize inbred line B73 was increased dramatically by introgression of chromosomal segments from the inbred line A188 through classical backcross breeding. Less than 0.2% of the immature B73 embryos tested (5 of 3,710) formed embryogenic callus. The breeding scheme(More)
We obtained transgenic maize plants by using high-velocity microprojectiles to transfer genes into embryongenic cells. Two selectable genes were used to confer resistance to either chlorsulfuron or phosphinothricin, and genes encoding either E. coli beta-glucuronidase or firefly luciferase were used as markers to provide convenient assays for(More)
Incorporating 10 to 100 μM AgNO3 into Phytagel™ (0.2%) solidified N6 medium containing 1 mg/L 2,4-D, 100 mg/L casamino acids and 25 mM praline (N6 1-100-25) promoted type II callus production from cultured Zea mays L. immature embryos of FRB73, B73 X A188 and a proprietary B73 BC6 genotype. Under these conditions, approximately 15, 80 and 80% of the(More)
The effectiveness of four phosphinothricin (PPT)-based selective agents were evaluated for use in maize transformation: glufosinate, bialaphos, Basta® and Herbiace®. Glufosinate and its commercial formulation, Basta®, were less effective in controlling growth of non-transgenic corn callus than the tripeptide, bialaphos, or its commercial formulation,(More)
Production of transgenic maize (Zea mays L.) callus, plants, and progeny from microprojectile bombardment of 2–5-d cultured Hi-II immature embryos is described. Histological evidence indicates that these tissues are amenable to transformation due to surface layer cell division of the scutellum. Two out of every 100 bombarded embryos produced transgenic(More)
We have developed a high-throughput Agrobacterium-mediated transformation model system using both nptII and the 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain CP4 (cp4) based selections in MicroTom, a miniature rapid-cycling cherry tomato variety. With the NPTII selection system, transformation frequency calculated as(More)
Corn lines with improved culturability and transformability were produced using Marker Assisted Breeding (MAB) to introgress specific regions from the highly transformable hybrid, Hi-II, into the elite line, FBLL that responds very poorly in culture. FBLL is a female inbred parental stiff-stalk line that has been used to produce a series of some of DEKALB’s(More)
Factors influencing the frequency of stable transformation and co-transformation of maize protoplasts utilizing a polyethylene glycol (PEG) mediated DNA uptake procedure have been investigated. Protoplast plating conditions, pre-treatment buffer composition, PEG concentration, and DNA concentration were all found to be important. Carrier DNA was not(More)