Charles Kirkby

Learn More
Due to the higher LET of kilovoltage (kV) radiation, there is potential for an increase in relative biological effectiveness (RBE) of absorbed doses of radiation from kV cone beam computed tomography (CBCT) sources in reference to megavoltage or Co-60 doses. This work develops a method for accurately coupling a Monte Carlo (MC) radiation transport code(More)
The effect of a change of tillage and crop residue management practice on the chemical and microbiological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop(More)
Images produced by commercial amorphous silicon electronic portal imaging devices (a-Si EPIDs) are subject to multiple blurring processes. Implementation of these devices for fluence measurement requires that the blur be removed from the images. A standard deconvolution operation can be performed to accomplish this assuming the blur kernel is spatially(More)
One of the attractive features of amorphous silicon electronic portal imaging devices (a-Si EPIDs) as dosimetric tools is that for open fields they are known to exhibit a generally linear relation between pixel value and incident energy fluence as measured by an ion chamber. It has also been established that a-Si EPIDs incorporating high atomic number(More)
Scattered radiation in the penumbra of a megavoltage radiation therapy beam can deposit a non-negligible dose in the healthy tissue around a target volume. The lower energy of the radiation in this region suggests that its biological effectiveness might not be the same as that of the open beam. In this work, we determined the relative biological damage in(More)
Helical tomotherapy is an increasingly common form of intensity modulated radiation therapy that allows for image guided adaptive radiotherapy. Its treatment planning system (TPS) uses a convolution superposition algorithm for dose distribution calculations. The accuracy of this algorithm in the presence of heterogeneities was evaluated against Monte Carlo(More)
PURPOSE There is interest in developing linac-MR systems for MRI-guided radiation therapy. To date, the designs for such linac-MR devices have been restricted to a transverse geometry where the static magnetic field is oriented perpendicular to the direction of the incident photon beam. This work extends possibilities in this field by proposing and(More)
Changing pulse repetition frequency or dose rate used for IMRT treatments can alter the number of monitor units (MUs) and the time required to deliver a plan. This work was done to develop a practical picture of the magnitude of these changes. We used Varian's Eclipse Treatment Planning System to calculate the number of MUs and beam-on times for a total of(More)
Existing studies have suggested some debate on whether the quality of radiation that delivers dose outside of the primary field of a radiotherapy photon beam can be considered the same as that inside the primary field. We used a Monte Carlo approach to simulate the electron fluence differential in energy inside a water phantom in response to irradiation by(More)
A novel geometry has been proposed for a hybrid magnetic resonance imaging (MRI)-linac system in which a 6 MV linac is mounted on the open end of a biplanar, low field (0.2 T) MRI magnet on a single gantry that is free to rotate around the patient. This geometry creates a scenario in which the magnetic field vector remains fixed with respect to the incident(More)