Learn More
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of(More)
ATP acts as a humoral mediator to control cell function extracellularly. The receptors that mediate the actions of ATP belong to two classes, the metabotropic P2Y receptors and the transmitter-gated, ion channel P2X receptors. This review describes the structure, distribution, function, and ligand recognition characteristics of P2X receptors, which comprise(More)
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and(More)
It is suggested that the P2-purinoceptor may be separated into two subtypes largely on the basis of the rank order of agonist potency of structural analogues of ATP and also on the activity of antagonists at the P2-purinoceptor: Subtype 1 (designated P2X), potency order: alpha, beta-methyleneATP, beta, gamma-methyleneATP greater than ATP = 2 methylthioATP;(More)
Efficient control of synaptic transmission requires a rapid mechanism for terminating the actions of neurotransmitters. For amino acids and monoamines, this is achieved by their uptake into the cell by specific high-affinity transporters; acetylcholine is first broken down in the extracellular space and then choline is taken up by the cell. Because ATP is(More)
1. Field stimulation of the sympathetic nerves of the guinea-pig isolated vas deferens with trains of pulses of 20 s at 1-8 Hz produced characteristic biphasic contractions. The effect of the novel ecto-ATPase inhibitor, 6-N,N-diethyl-D-beta, gamma-dibromomethyleneATP (ARL 67156, formerly known as FPL 67156), on the magnitude of the initial, predominantly(More)
1. The electrophysiological actions of the P2-purinoceptor agonists, adenosine 5'-triphosphate (ATP), 2-methylthioATP (2-meSATP), alpha, beta-methyleneATP (alpha, beta-meATP) and uridine 5'-triphosphate (UTP) were studied under concentration and voltage-clamp conditions in acutely dissociated rat tail artery smooth muscle cells. For comparison, their(More)
The cloning of a human G-protein-coupled receptor (GPCR) that specifically responds to UDP-glucose and related sugar-nucleotides has been reported recently. This receptor has important structural similarities to known members of the P2Y receptor family but also shows a distinctly different pharmacological response profile. Here, the IUPHAR Subcommittee for(More)
1. The electrophysiological actions of several agonists which may differentiate between P2X1- and P2X3-receptors were studied under concentration and voltage-clamp conditions in dissociated neurones of 1-4 day old rat dorsal root ganglia. 2. Beta,gamma-Methylene-D-ATP (beta,gamma-me-D-ATP) (1-300 microM), diadenosine 5',5'''-P1,P5-pentaphosphate (AP5A) (100(More)
The ability of adenosine 5'-triphosphate (ATP) to evoke acute pain has been known for many years, but its role in nociceptive signaling is only now becoming clear. ATP acts via P2X and P2Y receptors, and of particular importance here is the P2X(3) receptor. It is expressed selectively at high levels in nociceptive sensory neurons, where it forms functional(More)