Charles J Goodnight

Learn More
Wild et al. argue that the evolution of reduced virulence can be understood from the perspective of inclusive fitness, obviating the need to evoke group selection as a contributing causal factor. Although they acknowledge the mathematical equivalence of the inclusive fitness and multilevel selection approaches, they conclude that reduced virulence can be(More)
The study of group selection has developed along two autonomous lines. One approach, which we refer to as the adaptationist school, seeks to understand the evolution of existing traits by examining plausible mechanisms for their evolution and persistence. The other approach, which we refer to as the genetic school, seeks to examine how currently acting(More)
Genetic population differentiation is typically viewed as differentiation of population means. However, several theories of evolution and speciation postulate that populations differentiate not only with respect to the population means, but also with respect to the effects of alleles within these populations. I develop herein a measure of population(More)
A central assumption of quantitative genetic theory is that the breeder's equation (R=GP(-1)S) accurately predicts the evolutionary response to selection. Recent studies highlight the fact that the additive genetic variance-covariance matrix (G) may change over time, rendering the breeder's equation incapable of predicting evolutionary change over more than(More)
Understanding mechanisms for the evolution of barriers to gene flow within interbreeding populations continues to be a topic of great interest among evolutionary theorists. In this work, simulated evolving diploid populations illustrate how mild underdominance (heterozygote disadvantage) can be easily introduced at multiple loci in interbreeding populations(More)
Speciation caused by intrinsically forming barriers to gene flow is demonstrated using simulated populations. Although theory predicts that underdominance would be quickly eliminated from randomly mating populations, herein it is shown that when mating interactions are localized, mild underdominance can persist for long periods, as interbreeding populations(More)
Group selection may be defined as selection caused by the differential extinction or proliferation of groups. The socially polymorphic spider Anelosimus studiosus exhibits a behavioural polymorphism in which females exhibit either a 'docile' or 'aggressive' behavioural phenotype. Natural colonies are composed of a mixture of related docile and aggressive(More)
Two common features of long-term selection experiments are that, first, there is typically no evidence for selection limits due to exhaustion of genetic variation, and second, selection plateaus are frequently observed that last multiple generations before a response to selection is resumed. These features are usually attributed to the high mutation rates(More)
Experimental studies of group selection show that higher levels of selection act on indirect genetic effects, making the response to group and community selection qualitatively different from that of individual selection. This suggests that multilevel selection plays a key role in the evolution of supersocial societies. Experiments showing the effectiveness(More)
  • 1