Learn More
The study of group selection has developed along two autonomous lines. One approach, which we refer to as the adaptationist school, seeks to understand the evolution of existing traits by examining plausible mechanisms for their evolution and persistence. The other approach, which we refer to as the genetic school, seeks to examine how currently acting(More)
Wild et al. argue that the evolution of reduced virulence can be understood from the perspective of inclusive fitness, obviating the need to evoke group selection as a contributing causal factor. Although they acknowledge the mathematical equivalence of the inclusive fitness and multilevel selection approaches, they conclude that reduced virulence can be(More)
Genetic population differentiation is typically viewed as differentiation of population means. However, several theories of evolution and speciation postulate that populations differentiate not only with respect to the population means, but also with respect to the effects of alleles within these populations. I develop herein a measure of population(More)
Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization-what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as(More)
A central assumption of quantitative genetic theory is that the breeder's equation (R=GP(-1)S) accurately predicts the evolutionary response to selection. Recent studies highlight the fact that the additive genetic variance-covariance matrix (G) may change over time, rendering the breeder's equation incapable of predicting evolutionary change over more than(More)
Group selection may be defined as selection caused by the differential extinction or proliferation of groups. The socially polymorphic spider Anelosimus studiosus exhibits a behavioural polymorphism in which females exhibit either a 'docile' or 'aggressive' behavioural phenotype. Natural colonies are composed of a mixture of related docile and aggressive(More)
Understanding mechanisms for the evolution of barriers to gene flow within interbreeding populations continues to be a topic of great interest among evolutionary theorists. In this work, simulated evolving diploid populations illustrate how mild underdominance (heterozygote disadvantage) can be easily introduced at multiple loci in interbreeding populations(More)
Speciation caused by intrinsically forming barriers to gene flow is demonstrated using simulated populations. Although theory predicts that underdominance would be quickly eliminated from randomly mating populations, herein it is shown that when mating interactions are localized, mild underdominance can persist for long periods, as interbreeding populations(More)