Charles H. Anderson

Learn More
The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of(More)
The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy.(More)
We present a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intracortical connections so that information from a windowed region of primary visual cortex (V1) is(More)
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of(More)
A technique for enhancing the perceptual sharpness of an image is described. The enhancement algorithm augments the frequency content of the image using shape-invariant properties of edges across scale by using a nonlinearity that generates phase coherent higher harmonics. The procedure utilizes the Laplacian transform and the Laplacian pyramid image(More)
Human speed discrimination thresholds follow Weber's law over a large range of reference (i.e., pedestal) speeds, that is, the just-noticeable-difference in speed scales in proportion to the reference speed. We analyzed the neural representation of speed information in macaque middle temporal visual area (MT) to determine whether this representation can(More)
A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called steering coefficients). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson(More)
We describe a texture analysis system in which informative discrimination rules are learned from a multiresolution representation of the textured input. The system incorporates un-supervised and supervised learning via statistical machine learning and rule-based neural networks, respectively. The textured input is represented in the frequency-orientation(More)
We propose a general strategy for dynamic control of information flow between arrays of neurons at different levels of the visual pathway, starting in the lateral geniculate nucleus and the geniculorecipient layers of cortical area V1. This strategy can be used for resolving computational problems arising in the domains of stereopsis, directed visual(More)