Learn More
Climate change has led to major changes in the phenology (the timing of seasonal activities, such as flowering) of some species but not others. The extent to which flowering-time response to temperature is shared among closely related species might have important consequences for community-wide patterns of species loss under rapid climate change. Henry(More)
Invasive species have tremendous detrimental ecological and economic impacts. Climate change may exacerbate species invasions across communities if non-native species are better able to respond to climate changes than native species. Recent evidence indicates that species that respond to climate change by adjusting their phenology (i.e., the timing of(More)
PREMISE OF THE STUDY The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique(More)
In some ecological settings, an individual's fitness depends on both its own phenotype (individual-level selection) as well as the phenotype of the individuals with which it interacts (group-level selection). Using contextual analysis to measure multilevel selection in experimental stands of Arabidopsis thaliana, we detected significant linear selection(More)
Seed dormancy, by controlling the timing of germination, can strongly affect plant survival. The kind of seed dormancy, therefore, can influence both population and species-level processes such as colonization, adaptation, speciation, and extinction. We used a dataset comprising over 14,000 taxa in 318 families across the seed plants to test hypotheses on(More)
Climate change has resulted in major changes in the phenology--i.e. the timing of seasonal activities, such as flowering and bird migration--of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes(More)
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on(More)
Leaf out phenology affects a wide variety of ecosystem processes and ecological interactions and will take on added significance as leaf out times increasingly shift in response to warming temperatures associated with climate change. There is, however, relatively little information available on the factors affecting species differences in leaf out(More)
Intraspecific competitive interactions can profoundly influence phenotypic evolution. However, prior studies have rarely evaluated the evolutionary potential of the two components of competitive ability, tolerance of competition and suppression of neighbours. Here, we grow a set of 20 Arabidopsis thaliana recombinant inbred lines in three competitive(More)
BACKGROUND AND AIMS Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns(More)