Charles D. Hill

Learn More
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of(More)
Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1% [1, 2]. However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The colour code of [3] is a(More)
In this paper we demonstrate how data encoded in a five-qubit quantum error correction code can be converted, fault-tolerantly, into a seven-qubit Steane code. This is achieved by progressing through a series of codes, each of which fault-tolerantly corrects at least one error. Throughout the conversion the encoded qubit remains protected. We found, through(More)
While it is known that shared quantum entanglement can offer improved solutions to a number of purely cooperative tasks for groups of remote agents, controversy remains regarding the legitimacy of quantum games in a competitive setting—in particular, whether they offer any advantage beyond what is achievable using classical resources. We construct a(More)
  • 1