Learn More
Mitochondrial disorders are a large group of phenotypically heterogeneous diseases. An understanding of their molecular basis would benefit greatly from the ability to manipulate the mitochondrial genome and/or to introduce functional exogenous DNA into mitochondria. As a first step toward this approach, we have used electroporation to introduce a(More)
The presence of CpG motifs and their associated sequences in bacterial DNA causes an immunotoxic response following the delivery of these plasmid vectors into mammalian hosts. We describe a biotechnological approach to the elimination of this problem by the creation of a bacterial cre recombinase expression system, tightly controlled by the arabinose(More)
Gene therapy by use of integrating vectors carrying therapeutic transgene sequences offers the potential for a permanent cure of genetic diseases by stable vector insertion into the patients' chromosomes. However, three cases of T cell lymphoproliferative disease have been identified almost 3 years after retrovirus gene therapy for X-linked severe combined(More)
We report the results of a double-blind, placebo-controlled trial in nine cystic fibrosis (CF) subjects receiving cationic liposome complexed with a complementary DNA encoding the CF transmembrane conductance regulator (CFTR), and six CF subjects receiving only liposome to the nasal epithelium. No adverse clinical effects were seen and nasal biopsies showed(More)
Inefficient gene transfer, inaccessibility of stem cell compartments, transient gene expression, and adverse immune and inflammatory reactions to vector and transgenic protein are major barriers to successful in vivo application of gene therapy for most genetic diseases. Prenatal gene therapy with integrating vectors may overcome these problems and prevent(More)
The still experimental nature of prenatal gene therapy carries a certain degree of risk, both for the pregnant mother as well as for the fetus. Some of the risks are procedural hazards already known from more conventional fetal medicine interventions. Others are more specific to gene therapy such as the potential for interference with normal fetal(More)
The luciferase reporter gene is a useful tool for determining the efficacy of transfection of plasmid DNA and adenovirus-mediated gene transfer in vivo. However, we report here that the haemoglobin present in tissue samples can mask the detection of the luciferase activity and lead to underestimation of the luciferase levels. We evaluated the degree of(More)
Hemophilia B, also known as Christmas disease, arises from mutations in the factor IX (F9) gene. Its treatment in humans, by recombinant protein substitution, is expensive, thus limiting its application to intermittent treatment in bleeding episodes and prophylaxis during surgery; development of inhibitory antibodies is an associated hazard. This study(More)
Immune responses against an introduced transgenic protein are a potential risk in many gene replacement strategies to treat genetic disease. We have developed a gene delivery approach for hemophilia B based on lentiviral expression of human factor IX in purified hematopoietic stem cells. In both normal C57Bl/6J and hemophilic 129/Sv recipient mice, we(More)