Charles Chenwei Wang

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Intracranial pressure (ICP) monitoring is sometimes required in clinical pictures of stroke, as extensive intraparenchymal hematomas and intracranial bleeding may severely increase ICP, which can lead to irreversible conditions, such as dementia and cognitive derangement. ICP monitoring has been accepted as a procedure for the safe diagnosis of increased(More)
In this chapter we present in vivo experiments with a new minimally invasive method of monitoring intracranial pressure (ICP). Strain gauge deformation sensors are externally glued onto the exposed skull. The signal from these sensors is amplified, filtered, and sent to a computer with appropriate software for analysis and data storage. Saline infusions(More)
The search for a completely noninvasive intracranial pressure (ICPni) monitoring technique capable of real-time digitalized monitoring is the Holy Grail of brain research. If available, it may facilitate many fundamental questions within the range of ample applications in neurosurgery, neurosciences and translational medicine, from pharmaceutical clinical(More)
Intracranial pressure (ICP) is a major neurological parameter in animals and humans. ICP is a function of the relationship between the contents of the cranium (brain parenchyma, cerebrospinal fluid, and blood) and the volume of the skull. Increased ICP can cause serious physiological effects or even death in patients who do not quickly receive proper care,(More)
  • 1