Charles B. Walter

Learn More
Previous analyses of knowledge of results (KR) and motor learning have generally confounded the transient performance effects as shown when KR is present and the relatively permanent (i.e., learned) effects that we argue should be evaluated on a transfer test without KR. In this review, we classify investigations according to this distinction, and a number(More)
The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into(More)
When the left and right hands produce 2 different rhythms simultaneously, coordination of the hands is difficult unless the rhythms can be integrated into a unified temporal pattern. In the present study, the authors investigated whether a similar account can be applied to the spatial domain. Participants (N = 8) produced a movement trajectory of(More)
The present paper focused on the role of mechanical factors arising from the multijoint structure of the musculoskeletal system and their use in the control of different patterns of cyclical elbow-wrist movements. Across five levels of cycling frequency (from 0.45 Hz up to 3.05 Hz), three movement patterns were analyzed: (1) unidirectional, including(More)
Transformations of the underlying movement control of rapid sequential (reversal) responses were examined as the movement amplitude (Experiment 1) and moment of inertia (Experiment 2) were altered, with constant movement time. Increases in amplitude and inertia were both met by sharply increased joint torques with a constant temporal structure, suggesting(More)
Previously, an inverted U relationship between force and force variability was demonstrated in both static and dynamic responses. Recent research suggests that the inverted U function may be due to a lack of control of the temporal aspects of the response. To investigate this hypothesis, we examined the relationship between force and force variability in(More)
Past studies on bimanual coordination have revealed a general preference to move the limbs in a symmetrical fashion, also denoted as the in-phase mode. Its counterpart, the asymmetrical or anti-phase mode, is performed with lower degrees of accuracy and stability. This ubiquitous tendency to activate the homologous muscle groups is referred to as the muscle(More)
When movements are performed together in the upper-limbs, a strong tendency emerges to synchronize the patterns of motor output. This is most apparent when trying to do different things at the same time. The present experiment explored the simultaneous organization and control of spatiotemporally different movements. There were two practice conditions:(More)
Unidirectional positioning movements with spatiotemporal constraints were examined as a test of impulse-timing theory (Schmidt, 1976; 1980; Wallace, 1981). Movements were examined at the kinematic, kinetic, and neuromuscular levels in three experiments. In the first experiment, displacement was held constant while five different movement times were(More)
The present study addressed the efficacy of concurrently moving both arms, with and without a load added to the uninvolved arm, in facilitating the quality of movement of the involved side in individuals with moderate, chronic hemiplegia. Six hemiplegic cerebrovascular accident (CVA) subjects with left-hemisphere lesions participated in the study. The four(More)