Charles A Swofford

  • Citations Per Year
Learn More
Salmonella that secrete anticancer proteins have the potential to eliminate tumors, but nonspecific expression causes damage to healthy tissue. We hypothesize that Salmonella, integrated with a density-dependent switch, would only express proteins in tightly packed colonies within tumors. To test this hypothesis, we cloned the lux quorum-sensing (QS) system(More)
Bacterial therapies have the potential to overcome resistances that cause chemotherapies to fail. When using bacteria to produce anticancer agents in tumors, triggering gene expression is necessary to prevent systemic toxicity. The use of chemical triggers, however, is hampered by poor delivery of inducing molecules, which reduces the number of activated(More)
Bacterial therapies, designed to manufacture therapeutic proteins directly within tumors, could eliminate cancers that are resistant to other therapies. To be effective, a payload protein must be secreted, diffuse through tissue, and efficiently kill cancer cells. To date, these properties have not been shown for a single protein. The gene for(More)
Bacteria are perfect vessels for targeted cancer therapy. Conventional chemotherapy is limited by passive diffusion, and systemic administration causes severe side effects. Bacteria can overcome these obstacles by delivering therapeutic proteins specifically to tumors. Bacteria have been modified to produce proteins that directly kill cells, induce(More)
Engineered Salmonella have the potential to treat cancers that are not responsive to standard molecular therapies. This potential has not been realized because colonization in human tumors is insufficient and variable as shown in preliminary phase I trials. Recent studies have shown that Salmonella colonization is associated with an inflammatory response(More)
Targeted bacterial delivery of anticancer proteins has the ability to overcome therapeutic resistance in tumors that limits the efficacy of chemotherapeutics. The ability of bacteria to specifically target tumors allows for delivery of aggressive proteins that directly kill cancer cells and cannot be administered systemically. However, few proteins have(More)
Microfluidic devices enable precise quantification of the interactions between anti-cancer bacteria and tumor tissue. Direct observation of bacterial movement and gene expression in tissue is difficult with either monolayers of cells or tumor-bearing mice. Quantification of these interactions is necessary to understand the inherent mechanisms of bacterial(More)
  • 1