Learn More
We demonstrate a decoherence-free quantum memory of one qubit. By encoding the qubit into the decoherence-free subspace (DFS) of a pair of trapped 9Be+ ions, we protect the qubit from environment-induced dephasing that limits the storage time of a qubit composed of a single ion. We measured the storage time under ambient conditions and under interaction(More)
We experimentally investigate three methods, utilizing different atomic observables and entangled states, to increase the sensitivity of rotation angle measurements beyond the "standard quantum limit" for nonentangled states. All methods use a form of quantum mechanical "squeezing." In a system of two entangled trapped (9)Be(+) ions we observe a reduction(More)
Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away. Einstein, Podolsky and Rosen used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others(More)
We consider the dynamics of a quantum degenerate trapped gas of 7 Li atoms. Because the atoms have a negative s-wave scattering length, a Bose condensate of 7 Li becomes mechanically unstable when the number of condensate atoms approaches a maximum value. We calculate the dynamics of the collapse that occurs when the unstable point is reached. In addition,(More)
We present results from an experimental study of the decoherence and decay of quantum states of a trapped atomic ion's harmonic motion interacting with several types of engineered reservoirs. We experimentally simulate three types of reservoirs: a high-temperature amplitude reservoir, a zero-temperature amplitude reservoir , and a high-temperature phase(More)
  • 1