Charles A. Laughton

Learn More
We have investigated the effects of duplex length, sequence, salt concentration and superhelical density on the conformation of DNA nanocircles containing up to 178 base pairs using atomistic molecular dynamics simulation. These calculations reveal that the partitioning of twist and writhe is governed by a delicate balance of competing energetic terms. We(More)
Molecular dynamics (MD) simulations of membrane-embedded G-protein coupled receptors (GPCRs) have rapidly gained popularity among the molecular simulation community in recent years, a trend which has an obvious link to the tremendous pharmaceutical importance of this group of receptors and the increasing availability of crystal structures. In view of the(More)
We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B<-->A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both(More)
—For many macromolecular systems the accurate sampling of the relevant regions on the potential energy surface cannot be obtained by a single, long Molecular Dynamics (MD) trajectory. New approaches are required to promote more efficient sampling. We present the design and implementation of the Extensible Toolkit for Advanced Sampling and analYsis (Ex-TASY)(More)
Contemporary structural biology has an increased emphasis on high-throughput methods. Biomolecular simulations can add value to structural biology via the provision of dynamic information. However, at present there are no agreed measures for the quality of biomolecular simulation data. In this Letter, we suggest suitable measures for the quality assurance(More)
We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available(More)
We present a new molecular dynamics methodology to assist in structure-based drug design and other studies that seek to predict protein deformability. Termed Active Site Pressurization (ASP), the new methodology simply injects a resin into the ligand binding-site of a protein during the course of a molecular dynamics simulation such that novel,(More)
Analysis of 300 ns (ns) molecular dynamics (MD) simulations of an adenosine A2a receptor (A2a AR) model, conducted in triplicate, in 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) bilayers reveals significantly different protein dynamical behavior. Principal component analysis (PCA) shows that the(More)
The pathological characteristics of Alzheimer's Disease (AD) have been linked to the activity of three particular kinases--Glycogen Synthase Kinase 3β (GSK3β), Cyclin-Dependent Kinase 5 (CDK5) and Extracellular-signal Regulated Kinase 2 (ERK2). As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular(More)