Charles A. Hoeffer

Learn More
Mammalian target of rapamycin (mTOR) is a protein kinase involved in translation control and long-lasting synaptic plasticity. mTOR functions as the central component of two multi-protein signaling complexes, mTORC1 and mTORC2, which can be distinguished from each other based on their unique compositions and substrates. Although the majority of evidence(More)
Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of(More)
Activity-regulated gene expression mediates many aspects of neural plasticity, including long-term memory. In the prevailing view, patterned synaptic activity causes kinase-mediated activation of the transcription factor cyclic AMP response-element-binding protein, CREB. Together with appropriate cofactors, CREB then transcriptionally induces a group of(More)
Fragile X syndrome (FXS), a common inherited form of mental impairment and autism, is caused by transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. Earlier studies have identified a role for aberrant synaptic plasticity mediated by the metabotropic glutamate receptors (mGluRs) in FXS. However, many of these observations are derived(More)
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the(More)
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) in the hippocampus requires rapid protein synthesis, which suggests that mGluR activation is coupled to signaling pathways that regulate translation. Herein, we have investigated the signaling pathways that couple group I mGluRs to ribosomal S6 protein phosphorylation and(More)
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism. The protein (FMRP) encoded by the fragile X mental retardation gene (FMR1), is an RNA-binding protein linked to translational control. Recently, in the Fmr1 knockout mouse model of FXS, dysregulated translation initiation signaling was observed. To investigate(More)
Regulator of calcineurin 1 (RCAN1/MCIP1/DSCR1) regulates the calmodulin-dependent phosphatase calcineurin. Because it is located on human chromosome 21, RCAN1 has been postulated to contribute to mental retardation in Down syndrome and has been reported to be associated with neuronal degeneration in Alzheimer's disease. The studies herein are the first to(More)
FK506-binding protein 12 (FKBP12) binds the immunosuppressant drugs FK506 and rapamycin and regulates several signaling pathways, including mammalian target of rapamycin (mTOR) signaling. We determined whether the brain-specific disruption of the FKBP12 gene in mice altered mTOR signaling, synaptic plasticity, and memory. Biochemically, the FKBP12-deficient(More)
Generation of reactive oxygen species (ROS) causes cellular oxidative damage and has been implicated in the etiology of Alzheimer's disease (AD). In contrast, multiple lines of evidence indicate that ROS can normally modulate long-term potentiation (LTP), a cellular model for memory formation. We recently showed that decreasing the level of superoxide(More)