Learn More
The complete structure of the lipooligosaccharide (LOS) from Neisseria meningitidis strain NMB (serotype 2b:P1.2,5), a serogroup B cerebrospinal fluid isolate, was determined. Two oligosaccharide (OS) fractions and lipid-A were obtained following mild acid hydrolysis of the LOS. The structures in these fractions were determined using glycosyl composition(More)
The exclusive human pathogen Neisseria meningitidis expresses lipooligosaccharide (LOS), an endotoxin that is structurally distinct from the lipopolysaccharides (LPS) of enteric Gram-negative bacilli. Differences that appear to be biologically important occur in the composition and attachment of acyl chains to lipid A, phosphorylation patterns of lipid A,(More)
We have characterized an operon required for inner-core biosynthesis of the lipooligosaccharide (LOS) of Neisseria meningitidis. Using Tn916 mutagenesis, we recently identified the alpha-1,2-N-acetylglucosamine (GlcNAc) transferase gene (rfaK), which when inactivated prevents the addition of GlcNAc and alpha chain to the meningococcal LOS inner core (C. M.(More)
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different(More)
Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalysed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome(More)
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as(More)
Lysophosphatidic acid (LPA) and phosphatidic acid (PA) are critical phospholipid intermediates in the biosynthesis of cell membranes. In Escherichia coli, LPA acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase; EC 2.3.1.51) catalyses the transfer of an acyl chain from either acyl-coenzyme A or acyl-acyl carrier protein onto LPA to produce PA.(More)
Neisseria meningitidis expresses a heterogeneous population of lipooligosaccharide (LOS) inner cores variously substituted with alpha1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine (PEA), as well as glycine, attached to HepII. Combinations of these attachments to the LOS inner core represent immunodominant epitopes that are being(More)
The inner core structures of the lipooligosaccharides (LOS) of Neisseria meningitidis are potential vaccine candidates because both bactericidal and opsonic antibodies can be generated against these epitopes. In an effort to better understand LOS biosynthesis and the potential immunogenicity of the LOS inner core, we have determined the LOS structure from a(More)
The molecular basis for the resistance of serogroup B Neisseria meningitidis to the bactericidal activity of normal human sera (NHS) was examined with a NHS-resistant, invasive serogroup B meningococcal isolate and genetically and structurally defined capsule-, lipooligosaccharide (LOS)-, and sialylation-altered mutants of the wild-type strain. Expression(More)