Charitharth Vivek Lal

Learn More
The objective of this study is to review the candidate gene and genome-wide association studies relevant to bronchopulmonary dysplasia, and to discuss the emerging understanding of the complexities involved in genetic predisposition to bronchopulmonary dysplasia and its outcomes. Genetic factors contribute much of the variance in risk for BPD. Studies to(More)
OBJECTIVE To determine the impact of cerebellar hemorrhage (CH) on mortality and adverse neurodevelopmental (ND) outcome rates in extremely preterm infants admitted to a tertiary neonatal unit. STUDY DESIGN A total of 1120 eligible infants (<28 weeks gestation) were born from 1998 to 2008 and had at least one cranial ultrasound. ND outcome was determined(More)
MicroRNAs (miRs) are small conserved RNA that regulate gene expression. Bioinformatic analysis of miRNA profiles during mouse lung development indicated a role for multiple miRNA, including miRNA-489. miR-489 increased on completion of alveolar septation [postnatal day 42 (P42)], associated with decreases in its conserved target genes insulin-like growth(More)
The pathogenesis of bronchopulmonary dysplasia (BPD) is multifactorial, and the clinical phenotype of BPD is extremely variable. Several clinical and laboratory biomarkers have been proposed for the early identification of infants at higher risk of BPD and for determination of prognosis of infants with a diagnosis of BPD. The authors review available(More)
Alveolar growth abnormalities and severe respiratory dysfunction are often fatal. Identifying mechanisms that control epithelial proliferation and enlarged, poorly septated airspaces is essential in developing new therapies for lung disease. The membrane-bound ligand ephrin-B2 is strongly expressed in lung epithelium, and yet in contrast to its known(More)
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural(More)
BACKGROUND Premature rupture of membranes and preterm delivery are associated with Ureaplasma infection. We hypothesized that Ureaplasma induced extracellular collagen fragmentation results in production of the tripeptide PGP (proline-glycine-proline), a neutrophil chemoattractant. PGP release from collagen requires matrix metalloproteases (MMP-8/MMP-9)(More)
Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more(More)
The pathogenesis of Bronchopulmonary Dysplasia (BPD) is multifactorial and the clinical phenotype of BPD is extremely variable. Predicting BPD is difficult, as it is a disease with a clinical operational definition but many clinical phenotypes and endotypes. Most biomarkers studied over the years have low predictive accuracy, and none are currently used in(More)
Myeloid cells are key factors in the progression of bronchopulmonary dysplasia (BPD) pathogenesis. Endothelial monocyte-activating polypeptide II (EMAP II) mediates myeloid cell trafficking. The origin and physiological mechanism by which EMAP II affects pathogenesis in BPD is unknown. The objective was to determine the functional consequences of elevated(More)