Charanbir Kaur

Learn More
Effective attraction between like-charged walls mediated by counterions is studied using local molecular field (LMF) theory. Monte Carlo simulations of the "mimic system" given by LMF theory, with short-ranged "Coulomb core" interactions in an effective single particle potential incorporating a mean-field average of the long-ranged Coulomb interactions,(More)
A metastable state, characterized by a low degree of mass localization, is identified using density-functional theory (DFT). This free energy minimum, located through the proper evaluation of competing terms in the free energy functional, is independent of the specific form of the DFT used. Computer simulation results on particle motion indicate that this(More)
The importance of the presence of a small fraction of vacancies in a crystal structure is demonstrated from considerations of thermodynamic stability. We include in the density functional theory the effects due to the distortion of the lattice structure surrounding the vacancy and show that the free energy is less when vacancies are present. Near freezing(More)
The heterogeneous features of the supercooled state over different time regimes are explored in a self-consistent mode-coupling mode. The exponent a for the mean-square displacement <r(2)(t)> approximately t(a), of a tagged particle is computed. The non-Gaussian parameter alpha(2)(t) shows a peak in the short time regime in addition to a second peak over(More)
We incorporate the role of free volume in the density function of the amorphous structure and study its effects on the stability of such structures. The Density Functional Theory is used to explore this “Free Volume Model” of the supercooled structures. The Free energy minimization is carried out using the void concentration as a variational parameter. A(More)
The free energy of the supercooled liquid near freezing is studied in the density-functional approach using the modified weighted density approximation. A class of minima corresponding to heterogeneous structures characterized by weak mass localization are detected. The stability of these structures is found to be greater than the highly localized(More)
The nature of the tagged particle motion in the strongly correlated state of a dense liquid is studied with the self-consistent mode-coupling model. The tagged particle time correlation function psi(s)(q,t) is computed by taking into account the nonlinear feedback effects on its dynamics from the coupling with density fluctuations. We consider the two cases(More)
The empirical relation (D(*))(alpha) = a exp[S] between the self-diffusion coefficient D(*) and the excess entropy S of a liquid is studied here in the context of theoretical model calculation. The coefficient alpha is dependent on the interaction potential and shows a crossover at an intermediate density, where cooperative dynamics become more important.(More)
  • 1