Chara Pantazi

  • Citations Per Year
Learn More
The Darbouxian theory of integrability allows to determine when a polynomial differential system in C2 has a first integral of the kind f λ1 1 · · ·f λp p exp(g/h) where fi , g and h are polynomials in C[x, y], and λi ∈ C for i = 1, . . . , p. The functions of this form are called Darbouxian functions. Here, we solve the inverse problem, i.e. we(More)
Polynomial vector fields which admit a prescribed Darboux integrating factor are quite well-understood when the geometry of the underlying curve is nondegenerate. In the general setting morphisms of the affine plane may remove degeneracies of the curve, and thus allow more structural insight. In the present paper we establish some properties of integrating(More)
Antoni Ferragut, a) Jaume Llibre, b) and Chara Pantazi c) Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Av. Diagonal, 647, 08028, Barcelona, Catalonia, Spain Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain Departament de Matemàtica Aplicada I,(More)
We study the maximum number of limit cycles that can bifurcate from a degenerate center of a cubic homogeneous polynomial differential system. Using the averaging method of second order and perturbing inside the class of all cubic polynomial differential systems we prove that at most three limit cycles can bifurcate from the degenerate center. As far as we(More)
In this paper we study the Darboux transformations of planar vector fields of Schrödinger type. Using the isogaloisian property of Darboux transformation we prove the “invariance” of the objects of the “Darboux theory of integrability”. In particular, we also show how the shape invariance property of the potential is important in order to preserve the(More)
  • 1