Chaoying Yin

Learn More
The majority of human high-grade serous epithelial ovarian cancer (SEOC) is characterized by frequent mutations in p53 and alterations in the RB and FOXM1 pathways. A subset of human SEOC harbors a combination of germline and somatic mutations as well as epigenetic dysfunction for BRCA1/2. Using Cre-conditional alleles and intrabursal induction by(More)
Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six(More)
High-grade astrocytomas are invariably deadly and minimally responsive to therapy. Pten is frequently mutated in aggressive astrocytoma but not in low-grade astrocytoma. However, the Pten astrocytoma suppression mechanisms are unknown. Here we introduced conditional null alleles of Pten (Pten(loxp/loxp)) into a genetically engineered mouse astrocytoma model(More)
A drawback of gene therapy using adeno-associated virus (AAV) is the DNA packaging restriction of the viral capsid (<4.7 kb). Recent observations demonstrate oversized AAV genome transduction through an unknown mechanism. Herein, AAV production using an oversized reporter (6.2 kb) resulted in chloroform and DNase-resistant particles harboring distinct(More)
Self-complementary adeno-associated virus (scAAV) vectors can significantly minimize the vector load required to achieve sustained transgene expression. In this study, transcriptional regulatory elements were systematically screened to produce constitutive and liver-specific scAAV factor IX (FIX) expression cassettes. In addition, optimization of GC(More)
The p53 gene is the most frequent target of structural and functional genetic mutations in human cancer. Thus, considerable effort has been devoted to mapping the functional domains of p53 with regard to their impact on tumorigenesis in vivo. Studies have shown that the carboxy-terminal domain of p53 is sufficient for transformation in vitro. To determine(More)
We examined the selective pressure for, and the impact of, p53 inactivation during epithelial tumor evolution in a transgenic brain tumor model. In TgT(121) mice, cell-specific inactivation of the pRb pathway in brain choroid plexus epithelium initiates tumorigenesis and induces p53-dependent apoptosis. We previously showed that p53 deficiency accelerates(More)
The protein p53 is a key tumour-suppressor, as evidenced by its frequent inactivation in human cancers. Animal models have indicated that attenuation of p53-dependent cell death (apoptosis) can contribute to both the initiation and progression of cancer, but the molecular mechanisms are unknown. Although p53-mediated transcriptional activation is one(More)
Direct reprogramming of induced cardiomyocytes (iCMs) suffers from low efficiency and requires extensive epigenetic repatterning, although the underlying mechanisms are largely unknown. To address these issues, we screened for epigenetic regulators of iCM reprogramming and found that reducing levels of the polycomb complex gene Bmi1 significantly enhanced(More)