Learn More
Cervical facet joints are implicated as a major source of pain after whiplash injury. The purpose of this study was to investigate the proposed capsule strain injury mechanism of whiplash pain using neurophysiologic methods. Strain thresholds, threshold distribution, saturation strains and afterdischarge responses of capsule neural receptors were(More)
Cervical facet joints have been implicated as a major source of pain after whiplash injury. We sought to identify facet joint capsule receptors in the cervical spine and quantify their responses to capsular deformation. The response of mechanosensitive afferents in C5-C6 facet joint capsules to craniocaudal stretch (0.5 mm/s) was examined in anaesthetized(More)
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic(More)
An understanding of the biomechanical and physiological properties of spinal nerve roots, particularly in response to tension, is critical in understanding the pathomechanisms of pain and nerve root injury and subsequent management of related injuries. Biomechanical properties of dorsal nerve roots at the lumbar and sacral levels were evaluated at various(More)
STUDY DESIGN To establish a methodology for the neurophysiologic study of mechanoreceptors in the cervical facet joint capsule. OBJECTIVES To test a custom designed miniature dual bipolar electrode for recording the neural activity in cervical dorsal roots. To determine if the neural activity from different receptors in the capsule can be differentiated(More)
This study examines axonal changes in goat cervical facet joint capsules (FJC) subjected to low rate loading. Left C5-C6 FJC was subjected to a series of tensile tests from 2 mm to failure using a computer-controlled actuator. The FJC strain on the dorsal aspect was monitored by a stereo-imaging system. Stretched (n = 10) and unstretched (n = 7) capsules(More)
BACKGROUND It has been proposed that cervical facet joint capsules are a major source of whiplash pain. However, there is a paucity of neurophysiologic data to support this hypothesis. The purposes of this study were to determine the distribution of A-delta and C-fiber sensory receptors in the facet joint capsule and to test their patterns of response to(More)
Facet joints are implicated as a major source of neck and low-back pain. Both cervical and lumbar facet syndromes have been described in the medical literature. Biomechanical studies have shown that lumbar and cervical facet-joint capsules can undergo high strains during spine-loading. Neuroanatomic studies have demonstrated free and encapsulated nerve(More)
STUDY DESIGN This study was designed to investigate, using neurophysiologic techniques in an in vivo rat model, the effect of application of nucleus pulposus to the nerve root on the neural activity of the dorsal root ganglion and the corresponding receptive fields. OBJECTIVES To assess a further role of the dorsal root ganglion in mechanisms of radicular(More)
STUDY DESIGN This study analyzed the effects of autografted nucleus pulposus on nerve root axon morphology, neurophysiologic function, and sodium channel expression. OBJECTIVES To investigate the chronic effects of the epidural implantation of nucleus pulposus on nerve root morphology, neural activity, ectopic discharge, mechanosensitivity, and sodium(More)