Learn More
HYPB is a human histone H3 lysine 36 (H3K36)-specific methyltransferase and acts as the ortholog of yeast Set2. This study explored the physiological function of mammalian HYPB using knockout mice. Homozygous disruption of Hypb impaired H3K36 trimethylation but not mono- or dimethylation, and resulted in embryonic lethality at E10.5-E11.5. Severe vascular(More)
Rho GTPases are involved in cellular functions relevant to cancer. The roles of RhoA and Rac1 have already been established. However, the role of Rac3 in cancer aggressiveness is less well understood. This work was conducted to analyze the implication of Rac3 in the aggressiveness of two breast cancer cell lines, MDA-MB-231 and MCF-7: both express Rac3, but(More)
BACKGROUND Multidrug resistance (MDR) is one of the major problems in the treatment of cancer. Overcoming it is therefore expected to improve clinical outcomes for cancer patients. MDR is usually characterized by overexpression of ABC (ATP-binding cassette) protein transporters such as P-gp, MRP1, and ABCG2. Though the importance of ABC transporters for(More)
BACKGROUND Tissue factor (TF), an initiator of blood coagulation, participates in cancer progression and metastasis. We recently found that inhibition of MAPK/ERK upregulated both full length TF (flTF) and soluble isoform TF (asTF) gene expression and cell-associated TF activity in breast cancer MDA-MB-231 cells. We explored the possible mechanisms,(More)
OBJECTIVE To elucidate the expression of the bcl-2 gene in association with both biological characteristics of human primary pancreatic carcinoma and patient's prognosis. METHODS The s-p immunohistochemistry assay was used to detect the expression of the bcl-2 gene on paraffin-embedded sections from 97 cases of primary pancreatic carcinoma, 32 cases of(More)
Multiple drug resistance is still an unsolved problem in cancer therapy. Our previous study demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein (P-gp) in endothelial cells, resulting in a 20-fold increase in drug resistance and reduced efficiency of Dox treatment in a mice tumor model. In this study, we(More)
Multiple drug resistance remains an unsolved problem in cancer therapy. A previous study has demonstrated that the chemotherapeutic drug doxorubicin (Dox) induced upregulation of P-glycoprotein in endothelial cells, resulting in a 20‐fold increase in drug resistance and reduced efficiency of doxorubicin treatment in a mouse tumor model. In the present(More)
  • 1