Learn More
HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and −2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants. Whereas budding(More)
Mature, fully active human immunodeficiency virus protease (PR) is liberated from the Gag-Pol precursor via regulated autoprocessing. A chimeric protease precursor, glutathione S-transferase-transframe region (TFR)-PR-FLAG, also undergoes N-terminal autocatalytic maturation when it is expressed in Escherichia coli. Mutation of the surface residue H69 to(More)
BACKGROUND HIV protease (PR) is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. RESULTS We here describe a simple model system to directly examine HIV protease autoprocessing in(More)
BACKGROUND Regulated autoprocessing of HIV Gag-Pol precursor is required for the production of mature and fully active protease. We previously reported that H69E mutation in a pseudo wild type protease sequence significantly (>20-fold) impedes protease maturation in an in vitro autoprocessing assay and in transfected mammalian cells. RESULTS(More)
BACKGROUND The HIV-1 protease is initially synthesized as part of the Gag-Pol polyprotein in the infected cell. Protease autoprocessing, by which the protease domain embedded in the precursor catalyzes essential cleavage reactions, leads to liberation of the free mature protease at the late stage of the replication cycle. To examine autoprocessing reactions(More)
HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected(More)
The p6 region of the HIV-1 structural precursor polyprotein, Gag, contains two motifs, P7TAP11 and L35YPLXSL41, designated as late (L) domain-1 and -2, respectively. These motifs bind the ESCRT-I factor Tsg101 and the ESCRT adaptor Alix, respectively, and are critical for efficient budding of virus particles from the plasma membrane. L domain-2 is thought(More)
Retrovirus capsid is a fullerene-like lattice consisting of capsid protein hexamers and pentamers. Mathematical models for the lattice structure help understand the underlying biological mechanisms in the formation of viral capsids. It is known that viral capsids could be categorized into three major types: icosa-hedron, tube, and cone. While the model for(More)
In this paper, we develop a mathematical model for intracellular HIV-1 gag protein trafficking based on the hypotheses that gag proteins employ kinesins for active transport on microtubules and they can also diffuse in cytoplasm. This results in a time-dependent convection-diffusion equation in polar coordinates along with appropriate boundary and initial(More)
  • 1