Learn More
After central nervous system (CNS) demyelination-such as occurs during multiple sclerosis-there is often spontaneous regeneration of myelin sheaths, mainly by oligodendrocytes but also by Schwann cells. The origins of the remyelinating cells have not previously been established. We have used Cre-lox fate mapping in transgenic mice to show that(More)
Demyelination in the adult CNS can be followed by extensive repair. However, in multiple sclerosis, the differentiation of oligodendrocyte lineage cells present in demyelinated lesions is often inhibited by unknown factors. In this study, we test whether myelin debris, a feature of demyelinated lesions and an in vitro inhibitor of oligodendrocyte precursor(More)
Olig1 and Olig2 are closely related basic helix-loop-helix (bHLH) transcription factors that are expressed in myelinating oligodendrocytes and their progenitor cells in the developing central nervous system (CNS). Olig2 is necessary for the specification of oligodendrocytes, but the biological functions of Olig1 during oligodendrocyte lineage development(More)
Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar(More)
Remyelination following central nervous system demyelination is essential to prevent axon degeneration. However, remyelination ultimately fails in demyelinating diseases such as multiple sclerosis. This failure of remyelination is likely mediated by many factors, including changes in the extracellular signalling environment. Here, we examined the expression(More)
Several randomized trials have demonstrated non-small cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations can achieve favorable clinical outcomes on treatment with EGFR tyrosine kinase inhibitors (TKIs). EGFR mutation is considered as a predictive marker for efficacy of EGFR-TKIs in NSCLC. Here we show(More)
A requisite component of nervous system development is the achievement of cellular recognition and spatial segregation through competition-based refinement mechanisms. Competition for available axon space by myelinating oligodendrocytes ensures that all relevant CNS axons are myelinated properly. To ascertain the nature of this competition, we generated a(More)
CNS remyelination occurs more rapidly in young adult rats than in old rats. Since the inflammatory response initiated by demyelination is an important trigger for remyelination, we address whether ageing changes in remyelination are associated with changes in the inflammatory response. Using a toxin model of demyelination, where the inflammatory response(More)
Protecting axons from degeneration represents a major unmet need in the treatment of myelin disorders and especially the currently untreatable secondary progressive stages of multiple sclerosis (MS). Several lines of evidence indicate that ensuring myelin sheaths are restored to demyelinated axons, the regenerative process of remyelination, represents one(More)
The cortical stab injury has been widely used for biochemical analysis of molecular changes following CNS injury. However, the cellular responses to this injury have not been accurately quantified. In order to provide a baseline for biochemical studies and future experiments on the manipulation of the CNS injury response we have undertaken a quantitative(More)