Chao-Xing Yuan

Learn More
The TRAP (thyroid hormone receptor-associated proteins) transcription coactivator complex (also known as Mediator) was first isolated as a group of proteins that facilitate the function of the thyroid hormone receptor. This complex interacts physically with several nuclear receptors through the TRAP220 subunit, and with diverse activators through other(More)
SOX9 transcription factor is involved in chondrocyte differentiation and male sex determination. Heterozygous defects in the human SOX9 gene cause campomelic dysplasia. The mechanisms behind SOX9 function are not understood despite the description of different target genes. This study therefore sets out to identify SOX9-associated proteins to unravel how(More)
Target gene activation by nuclear hormone receptors, including estrogen receptors (ERs), is thought to be mediated by a variety of interacting cofactors. Here we identify a number of nuclear extract-derived proteins that interact with immobilized ER ligand binding domains in a 17beta-estradiol-dependent manner. The most prominent of these are components of(More)
Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis and lacks a human cell model of early disease progression. When human PDAC cells are injected into immunodeficient mice, they generate advanced-stage cancer. We hypothesized that if human PDAC cells were converted to pluripotency and then allowed to differentiate back into pancreatic tissue,(More)
The TRAP/Mediator complex serves as a coactivator for many transcriptional activators, including nuclear receptors such as the thyroid hormone receptor (TR) that targets the TRAP220 subunit. The critical but selective function of TRAP220 is evidenced by the embryonic lethal phenotype of Trap220(-)(/)(-) mice and by the observation that Trap220(-)(/)(-)(More)
TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here, we identify lysine acetylation as a novel post-translational modification(More)
The discovery of long non-coding RNA (lncRNA) has dramatically altered our understanding of cancer. Here, we describe a comprehensive analysis of lncRNA alterations at transcriptional, genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from The Cancer Genome Atlas. Our results suggest that the expression and dysregulation(More)
Laryngeal cancer remains a worldwide health problem. The identification of biomarkers unique to laryngeal cancer may provide new insights into its pathogenesis, as well as provide potential targets for novel therapies and early detection. In order to identify potential biomarkers, we performed a proteomic analysis of laryngeal cancer specimens. Using(More)
Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different(More)
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal(More)