Learn More
Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting(More)
Cyclin-dependent kinases (CDKs) play important roles in the development of many types of cancers by binding with their paired cyclins. However, the function of CDK11 larger protein isomer, CDK11(p110), in the tumorigenesis of human breast cancer remains unclear. In the present study, we explored the effects and molecular mechanisms of CDK11(p110) in the(More)
While the mechanisms of human cancer development are not fully understood, evidence of microRNA (miRNA, miR) dysregulation has been reported in many human diseases, including cancer. miRs are small noncoding RNA molecules that regulate posttranscriptional gene expression by binding to complementary sequences in the specific region of gene mRNAs, resulting(More)
Huntington’s disease (HD) is an incurable neurodegenerative disorder that is characterized by motor dysfunction, cognitive impairment, and behavioral abnormalities. It is an autosomal dominant disorder caused by a CAG repeat expansion in the huntingtin gene, resulting in progressive neuronal loss predominately in the striatum and cortex. Despite the(More)
MicroRNAs (miRs) are short endogenous non-coding RNAs that act as posttranscriptional regulatory factors of gene expression. Downregulation of miR-1 has been reported in gastric cancer; however, the mechanisms underlying its functions via target genes in gastric cancer remain largely unknown. The purpose of this study was to investigate the mechanism by(More)
Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less(More)
Previous studies have indicated that enhancement of autophagy lysosome pathway may be beneficial for Parkinson’s disease (PD), in which aberrant accumulation of aggregated/misfolded proteins and mitochondrial dysfunction are considered as crucial pathogenesis. Recently, a number of studies have suggested the neuroprotective effects of lithium in models of(More)
To simulate brain microenvironment, adipose-derived mesenchymal stem cells (AMSC) were induced to differentiate to neuronal-like cells in rat cortex and hippocampus medium (Cox + Hip). First, isolated AMSC were characterized by flow cytometer and the capacity of adipogenesis and osteogenesis. After induction in rat cortex and hippocampus conditioned medium,(More)
Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors(More)
To clarify the role of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the therapeutic value of BGJ398 targeted to FGFR4. We constructed lentivirus vectors to stably knockdown FGFR4 expression in GC cells. Function assays in vitro and in vivo, treated with 5-fluorouracil (5-Fu) and BGJ398, were performed to study the change of(More)