Chantal Compère

Learn More
The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0:1 km 2 and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere.(More)
The ANTARES Collaboration proposes to construct a large area water Cherenkov detector in the deep Mediterranean Sea, optimised for the detection of muons from high-energy astrophysical neutrinos. This paper presents the scientific motivation for building such a device, along with a review of the technical issues involved in its design and construction. The(More)
Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that(More)
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a three-dimensional matrix of 900 large area photomultiplier tubes housed in pressure-resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in(More)
This work deals with the design of a high sensitivity DNA sequence detector using a 50 MHz quartz crystal microbalance (QCM) electronic oscillator circuit. The oscillator circuitry is based on Miller topology, which is able to work in damping media. Calibration and experimental study of frequency noise are carried out, finding that the designed sensor has a(More)
The antifouling potential of commercial hydrolases, four proteases, seven glycosidases and one lipase was evaluated on the adhesion of marine Pseudoalteromonas sp. D41. The experimental method, adapted to screen antifouling agents, was based on bacterial adhesion in natural sterile sea water in a microtiter plate and on total biomass quantification by the(More)
Two quartz crystal microbalance oligonucleotide biosensors of a toxic microalga gene sequence (Alexandrium Minutum) have been designed. Grafting on a gold surface of 20-base thiol- or biotin-labeled probe, and selective hybridization with the complementary 20-base target, have been monitored in situ with a 27 MHz quartz crystal microbalance under controlled(More)
It is shown that the surface-enhanced Raman scattering (SERS) technique can be applied to detect organic molecules during in situ experiments. To this purpose, we used trans-1,2-bis(4-pyridyl)ethylene (BPE) as a target molecule. Adsorbed on the SERS chemosensor surface and excited under laser, the vibration modes of the molecules can be identified. SERS(More)
Among marine algae species, Alexandrium minutum produces a phycotoxin called paralytic shellfish poisoning (PSP) that is introduced in the food chain through the ingestion of phytoplankton by shellfishs, and later by human consumers. Thus, in situ monitoring of A. minutum proliferation in coastal seawater is of great economical importance for marine(More)
  • 1