Chantal Compère

Learn More
Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp.(More)
These days, many marine autonomous environment monitoring networks are set up in the world. These systems take advantage of existing superstructures such as offshore platforms, lightships, piers, breakwaters or are placed on specially designed buoys or underwater oceanographic structures. These systems commonly use various sensors to measure parameters such(More)
AIMS The nature of exopolymers involved in the adhesion of a marine biofilm-forming bacterium Pseudoalteromonas sp. D41 was investigated to evaluate and understand the antifouling potential of subtilisin. METHODS AND RESULTS The exopolymers of D41 produced by fermentation were analysed by FTIR and SDS-PAGE showing the presence of polysaccharides,(More)
The antifouling potential of commercial hydrolases, four proteases, seven glycosidases and one lipase was evaluated on the adhesion of marine Pseudoalteromonas sp. D41. The experimental method, adapted to screen antifouling agents, was based on bacterial adhesion in natural sterile sea water in a microtiter plate and on total biomass quantification by the(More)
Immunosensors, based on the immobilization of a model rabbit antibody on mixed self-assembled monolayers and Protein A as a linking agent on gold transducers, were elaborated and characterized at each step by modulated polarization-infrared spectroscopy (PM-IRRAS) and occasionally by atomic force microscopy (AFM) and quartz crystal microbalance (QCM). By(More)
Bacterial biofilms occur on all submerged structures in marine environments. The authors previously reported that the marine bacterium Pseudoalteromonas sp. 3J6 secretes antibiofilm activity. Here, it was discovered that another Pseudoalteromonas sp. strain, D41, inhibited the development of strain 3J6 in mixed biofilms. Confocal laser scanning microscope(More)
Binary mixtures of 11-mercaptoundecanoic acid (MUA) and other thiols of various lengths and terminal functions were chemisorbed on gold-coated surfaces via S-Au bonds to form mixed self-assembled monolayers (SAMs). Several values of the mole fraction of MUA in the thiol mixtures were tested and the structure and composition of the resulted thin films were(More)
This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted(More)
Adhesion of bacterial strains on solid substrates is likely related to the properties of the outer shell of the micro-organisms. Aiming at a better understanding and control of the biofilm formation in seawater, the surface chemical composition of three marine bacterial strains was investigated by combining Fourier transform IR spectroscopy, X-ray(More)
Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer-membrane and total(More)