Learn More
Eutrophication has become a serious environmental threat throughout the world. In particular, the presence of cyanobacteria toxins, especially microcystins (MCs), has become a severe problem. Inhibition of Microcystis growth in water resources is the most effective way to reduce MCs, but it is a long-term investment. In the present study, a microgel-Fe(Ⅲ)(More)
Osteomyelitis is a bone infection disease which is caused by bacteria or other germs, and could cause serious impact on the health and working capacity of the patients. Alendronate (ALN) can chelate strongly with the calcium ion of hydroxyapatite (HA) which is commonly used to treat osteoporosis. Nanomedicine has attracted a lot of attention in that the(More)
HA and bone morphogenetic protein-2 (BMP-2) possess superior osteoinductive and osteoconductive activities in the repair of bone defects. In this study, a BMP-2 mimicking oligopeptide (serine-serine-valine-proline-threonine, SSVPT) was introduced to the surface of nano-sized HA as the reinforcement phase of a poly(methyl methacrylate) (PMMA) cement, and the(More)
The deciphering of structure-property relationships is of high importance to rational design of functional molecules and to explore their potential applications. In this work, a series of silole derivatives substituted with benzo[b]thiophene (BT) at the 2,5-positions of the silole ring are synthesized and characterized. The experimental investigation(More)
The objective of this study is to prepare a biocompatible nanohydroxyapatite/poly(methyl methacrylate) (HA/PMMA) composite bone cement, which has good mechanical property and can be used for vertebroplasty. Up to 40 wt % of nanohydroxyapatite (nano-HA) in the power, which was surface modified with poly(methylmethacrylate-co-γ-methacryloxypropyl(More)
In this paper, a series of copolymer hydrogels were fabricated from methacrylated poly(γ-glutamic acid) (mPGA) and poly(ethylene glycol) diacrylate (PEGDA). The effect of ionic strength and pH on the swelling behavior and mechanical properties of these hydrogels were studied in detail. Release of Rhodamine B as a model drug from the hydrogel was evaluated(More)
pH-triggered conformational change and subsequent re-assembly of nanostructures provide a new strategy in nanomedicine for controlled drug release and enhanced therapy. Here, we reported the development of a novel pH-responsive nano-assembly as a drug carrier from peptide amphiphile (PA) consisting of mimicking peptide and stearic acid moieties. The(More)
In this paper, the peptide amphiphiles (PA) which consists of RGDSEEEEEEEEEEK as pH-sensitive segment and stearic acid as hydrophobic segment named RGDS-E10-Lys(C18) was successfully synthesized. TEM images showed that uniformly dispersed nanoparticles could be formed by PA molecules in pH 7.4 medium, however, disintegrated in pH 5.0 medium. Circular(More)