Changyong Yim

Learn More
We report a facile and sensitive analytical method for the detection of pathogenic bacteria. Salmonella bacteria in milk were captured by antibody-conjugated magnetic nanoparticles (MNPs) and separated from analyte samples by applying an external magnetic field. The MNP-Salmonella complexes were re-dispersed in a buffer solution then exposed to(More)
Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and(More)
We developed a simple method to prepare hybrid copper-silver conductive tracks under flash light sintering. The developed metal nanoparticle-based ink is convenient because its preparation process is free of any tedious washing steps. The inks were composed of commercially available copper nanoparticles which were mixed with formic acid, silver nitrate, and(More)
A facile method was developed for the detection of Troponin I (TnI) using dendritic platinum nanoparticles and capillary tube indicators. Dendritic platinum nanoparticles were functionalized with TnI antibodies, which were used to capture TnI in human serum. The captured TnI was conjugated to the inner surface of a glass vial, to which a hydrogen peroxide(More)
We developed a novel gravimetric immunoassay for sensitive detection of multiple protein biomarkers using silicon microcantilever arrays and multifunctional hybrid nanoparticles. Magnetic-photocatalytic hybrid nanoparticles with a highly crystalline TiO(2) shell were synthesized using a solvothermal reaction without a calcination process. After(More)
We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e.  AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating(More)
A simple, low-cost, and reliable process of production for conductive tracks and their transfer to polydimethylsiloxane (PDMS) substrate has been proposed. Flexible electrodes were fabricated using conductive nanoparticulates under intensive pulsed light which were then transferred on to a PDMS substrate via a pouring, curing, and peeling process. The(More)
We fabricated magnetorheological elastomer (MRE) films consisting of polydimethylsiloxane and various concentrations of fluorinated carbonyl iron particles. The application of a magnetic field to the MRE film induced changes in the surface morphology due to the alignment of the iron particles along the magnetic field lines. At low concentrations of iron(More)
We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS),(More)
A novel quartz resonator was developed to measure, simultaneously, changes in the mass and electrical resistance of a polyaniline film during the absorption of water vapor. Interdigitated gold electrodes were vacuum-deposited on the sensing surfaces of the quartz crystals, and polyaniline films were drop-cast on the electrodes used to measure the changes in(More)