Changyong Song

Learn More
We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while(More)
The missing data problem, i.e., the intensities at the center of diffraction patterns cannot be experimentally measured, is currently a major limitation for wider applications of coherent diffraction microscopy. We report here that, when the missing data are confined within the centrospeckle, the missing data problem can be reliably solved. With an improved(More)
Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein(More)
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement(More)
Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy,(More)
We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials--intramuscular fish bone--at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we(More)
Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic(More)
An experimental system for serial femtosecond crystallography using an X-ray free-electron laser (XFEL) has been developed. It basically consists of a sample chamber, fluid injectors and a two-dimensional detector. The chamber and the injectors are operated under helium atmosphere at 1 atm. The ambient pressure operation facilitates applications to fluid(More)
We report the recording and reconstruction of x-ray diffraction patterns from single, unstained viruses, for the first time. By separating the diffraction pattern of the virus particles from that of their surroundings, we performed quantitative and high-contrast imaging of a single virion. The structure of the viral capsid inside a virion was visualized.(More)
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers(More)