Changwook Min

Learn More
Real-time monitoring of drug efficacy in glioblastoma multiforme (GBM) is a major clinical problem as serial re-biopsy of primary tumours is often not a clinical option. MGMT (O(6)-methylguanine DNA methyltransferase) and APNG (alkylpurine-DNA-N-glycosylase) are key enzymes capable of repairing temozolomide-induced DNA damages and their levels in tissue are(More)
Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique(More)
The task of rapidly identifying patients infected with Mycobacterium tuberculosis in resource-constrained environments remains a challenge. A sensitive and robust platform that does not require bacterial isolation or culture is critical in making informed diagnostic and therapeutic decisions. Here we introduce a platform for the detection of nucleic acids(More)
Magnetic relaxation switching (MRSw) assays that employ target-induced aggregation (or disaggregation) of magnetic nanoparticles (MNPs) can be used to detect a wide range of biomolecules. The precise working mechanisms, however, remain poorly understood, often leading to confounding interpretation. We herein present a systematic and comprehensive(More)
Responses to molecularly targeted therapies can be highly variable and depend on mutations, fluctuations in target protein levels in individual cells, and drug delivery. The ability to rapidly quantitate drug response in cells harvested from patients in a point-of-care setting would have far reaching implications. Capitalizing on recent developments with(More)
We have developed a next generation, miniaturized platform to diagnose disease at the point-of-care using diagnostic magnetic resonance (DMR-3). Utilizing a rapidly growing library of functionalized magnetic nanoparticles, DMR has previously been demonstrated as a versatile tool to quantitatively and rapidly detect disease biomarkers in unprocessed(More)
The ability to rapidly diagnose gram-positive pathogenic bacteria would have far reaching biomedical and technological applications. Here we describe the bioorthogonal modification of small molecule antibiotics (vancomycin and daptomycin), which bind to the cell wall of gram-positive bacteria. The bound antibiotics conjugates can be reacted orthogonally(More)
Magnetic biosensors, based on nanomaterials and miniature electronics, have emerged as a powerful diagnostic platform. Benefiting from the inherently negligible magnetic background of biological objects, magnetic detection is highly selective even in complex biological media. The sensing thus requires minimal sample purification and yet achieves a high(More)
The widespread distribution of smartphones, with their integrated sensors and communication capabilities, makes them an ideal platform for point-of-care (POC) diagnosis, especially in resource-limited settings. Molecular diagnostics, however, have been difficult to implement in smartphones. We herein report a diffraction-based approach that enables(More)