Changtao Wang

Learn More
We present that an interference lithography technique beyond the diffraction limit can be theoretically achieved by positing an anisotropic metamaterial under the conventional lithographic mask. Based on the special dispersion characteristics of the metamaterial, only the enhanced evanescent waves with high spatial frequencies can transmit through the(More)
Subwavelength imaging can be obtained with alternately layered metallodielectric films structure, even when the permittivity of metal and dielectric are not matched. This occurs as the effective transversal permittivity tends to be zero or the vertical one approaches infinity, depending on the permittivity value of the utilized dielectric and metal(More)
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous(More)
The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we(More)
A novel method is proposed to manipulate beam by modulating light phase through a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electro-magnetic energy in the form of surface plasmon polaritons (SPPs) in nanometric waveguides and provide desired phase retardations of beam manipulating with variant(More)
Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical(More)
As highlighted by recent articles [Phys. Rev. Lett. 105, 053901 (2010) and Science 331, 889-892 (2011)], the coherent control of narrowband perfect absorption in intrinsic silicon slab has attracted much attention. In this paper, we demonstrate that broadband coherent perfect absorber (CPA) can be achieved by heavily doping an ultrathin silicon film. Two(More)
Dispersion engineering of metamaterials is critical yet not fully released in applications where broadband and multispectral responses are desirable. Here we propose a strategy to circumvent the bandwidth limitation of metamaterials by implementing two-dimensional dispersion engineering in the meta-atoms. Lorentzian resonances are exploited as building(More)
An approach for designing a wide-angle perfect absorber at infrared frequencies is proposed. The technique is based on a perfectly impedance-matched sheet (PIMS) formed by plasmonic nanostructure. It is shown that the effective impedance is more physical meaningful and beneficial than effective medium in describing the electromagnetic properties of(More)