Changsun Eun

Learn More
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in(More)
Thrombin is generated enzymatically from prothrombin by two pathways with the intermediates of meizothrombin and prethrombin-2. Experimental concentration profiles from two independent groups for these two pathways have been re-analyzed. By rationally combining the independent data sets, a simple mechanism can be established and rate constants determined. A(More)
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics(More)
Competition between reactive species is commonplace in typical chemical reactions. Specifically the primary reaction between a substrate and its target enzyme may be altered when interactions with secondary species in the system are substantial. We explore this competition phenomenon for diffusion-limited reactions in the presence of neighboring particles(More)
Transcription factor IIS (TFIIS) is a protein known for catalyzing the cleavage reaction of the 3'-end of backtracked RNA transcript, allowing RNA polymerase II (Pol II) to reactivate the transcription process from the arrested state. Recent structural studies have provided a molecular basis of protein-protein interaction between TFIIS and Pol II. However,(More)
We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects.(More)
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion "barriers" arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments.(More)
  • 1