Changshui Zhang

Learn More
A novel semi-supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named <i>Linear Neighborhood Propagation (LNP)</i>, can propagate the labels from the labeled points to the whole dataset using these linear neighborhoods with(More)
In this paper, we propose a novel transductive learning framework named manifold-ranking based image retrieval (MRBIR). Given a query image, MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance between the query and all the images in the database(More)
Canonical correlation analysis (CCA) is applied to analyze the frequency components of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG). The essence of this method is to extract a narrowband frequency component of SSVEP in EEG. A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain(More)
Distance metric is a key issue in many machine learning algorithms. This paper considers a general problem of learning from pairwise constraints in the form of must-links and cannot-links. As one kind of side information, a must-link indicates the pair of the two data points must be in a same class, while a cannot-link indicates that the two data points(More)
Multi-label learning refers to the problems where an instance can be assigned to more than one category. In this paper, we present a novel Semi-supervised algorithm for Multi-label learning by solving a Sylvester Equation (SMSE). Two graphs are first constructed on instance level and category level respectively. For instance level, a graph is defined based(More)
Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A(More)
In this paper, we study face hallucination or synthesizing a high-resolution face image from a low-resolution input, with the help of a large collection of other highresolution face images. We develop a two-step statistical modeling approach that integrates both a global parametric model and a local nonparametric model. First, we derive a global linear(More)
In this paper, a novel graph-based transductive classification approach, called linear neighborhood propagation, is proposed. The basic idea is to predict the label of a data point according to its neighbors in a linear way. This method can be cast into a second-order intrinsic Gaussian Markov random field framework. Its result corresponds to a solution to(More)
Multi-task learning (MTL) aims to improve the performance of multiple related tasks by exploiting the intrinsic relationships among them. Recently, multi-task feature learning algorithms have received increasing attention and they have been successfully applied to many applications involving high dimensional data. However, they assume that all tasks share a(More)