Learn More
Determination of sizes and flexibilities of RNA molecules is important in understanding the nature of packing in folded structures and in elucidating interactions between RNA and DNA or proteins. Using the coordinates of the structures of RNA in the Protein Data Bank we find that the size of the folded RNA structures, measured using the radius of gyration(More)
In neurons, synaptotagmin 1 (Syt1) is thought to mediate the fusion of synaptic vesicles with the plasma membrane when presynaptic Ca2+ levels rise. However, in vitro reconstitution experiments have failed to recapitulate key characteristics of Ca2+-triggered membrane fusion. Using an in vitro single-vesicle fusion assay, we found that membrane-anchored(More)
The chaperonin GroEL-GroES, a machine that helps proteins to fold, cycles through a number of allosteric states, the T state, with high affinity for substrate proteins, the ATP-bound R state, and the R" (GroEL-ADP-GroES) complex. Here, we use a self-organized polymer model for the GroEL allosteric states and a general structure-based technique to simulate(More)
Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The sizes of proteins in the denatured and folded states, cooperativity of the(More)
Using self-organized polymer models, we predict mechanical unfolding and refolding pathways of ribozymes, and the green fluorescent protein. In agreement with experiments, there are between six and eight unfolding transitions in the Tetrahymena ribozyme. Depending on the loading rate, the number of rips in the force-ramp unfolding of the Azoarcus ribozymes(More)
Mechanical unfolding trajectories, generated by applying constant force in optical-tweezer experiments, show that RNA hairpins and the P5abc subdomain of the group I intron unfold reversibly. We use coarse-grained Go-like models for RNA hairpins to explore forced unfolding over a broad range of temperatures. A number of predictions that are amenable to(More)
Nanomanipulation of individual RNA molecules, using laser optical tweezers, has made it possible to infer the major features of their energy landscape. Time-dependent mechanical unfolding trajectories, measured at a constant stretching force (f(S)) of simple RNA structures (hairpins and three-helix junctions) sandwiched between RNA/DNA hybrid handles show(More)
The distances over which biological molecules and their complexes can function range from a few nanometres, in the case of folded structures, to millimetres, for example, during chromosome organization. Describing phenomena that cover such diverse length, and also time, scales requires models that capture the underlying physics for the particular length(More)
Single molecule mechanical unfolding experiments are beginning to provide profiles of the complex energy landscape of biomolecules. In order to obtain reliable estimates of the energy landscape characteristics it is necessary to combine the experimental measurements (the force extension curves, the mechanical unfolding trajectories, force or loading rate(More)
A plausible consequence of the rugged folding energy landscapes inherent to biomolecules is that there may be more than one functionally competent folded state. Indeed, molecule-to-molecule variations in the folding dynamics of enzymes and ribozymes have recently been identified in single-molecule experiments, but without systematic quantification or an(More)