Chang-qing Zhao

Learn More
Intervertebral disc degeneration, which mimics disc aging but occurs at an accelerated rate, is considered to be related to neck or low back pain and disc herniation. Degenerated discs show breakdown of the extracellular matrix and thus fail to bear the daily loadings exerted on the spine. Rather than a passive process of wear and tear, disc degeneration is(More)
BACKGROUND To investigate the potential of T2 mapping for characterizing the process of intervertebral disc degeneration (IDD) in a rabbit model. METHODS Thirty-five rabbits underwent an annular stab to the L4/5 discs (L5/6 discs served as internal normal controls). Degenerative changes were graded according to the modified Thompson classification and(More)
Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear.(More)
BACKGROUND Large lumbar or lumbosacral (LS) disc herniations usually expand from the paramedian space to the neuroforamen and compress both the transversing (lower) and the exiting (upper) nerve roots, thus leading to bi-radicular symptoms. Bi-radicular involvement is a statistically significant risk factor for poor outcome in patients presenting with far(More)
Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs) to limit degradation of the extracellular matrix. Low levels of TIMP3 have been demonstrated in cancer tissues at advanced clinical stages, with positive distant metastasis and chemotherapeutic resistance. We examined the role of TIMP3 in osteosarcoma (OS) cell(More)
  • 1