Chang-Yub Kim

Learn More
Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA(More)
In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus 'what to try first' strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that(More)
All living systems require protection against the damaging effects of reactive oxygen species. The genome of Mycobacterium tuberculosis, the cause of TB, encodes a number of peroxidases that are thought to be active against organic and inorganic peroxides, and are likely to play a key role in the ability of this organism to survive within the phagosomes of(More)
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We(More)
A highly automated method for rapidly identifying soluble protein variants with good expression yields has been developed. This method is based on a commercially available in vitro protein expression system. It consists of two polymerase chain reactions (PCR) followed by in vitro protein expression and protein quantification by dot blot. The PCR protocols(More)
We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were(More)
The structure of Mycobacterium tuberculosis dUTP nucleotidohydrolase (dUTPase) has been determined at 1.3 Angstrom resolution in complex with magnesium ion and the non-hydrolyzable substrate analog, alpha,beta-imido dUTP. dUTPase is an enzyme essential for depleting potentially toxic concentrations of dUTP in the cell. Given the importance of its biological(More)
The three-dimensional structure of Rv2607, a putative pyridoxine 5'-phosphate oxidase (PNPOx) from Mycobacterium tuberculosis, has been determined by X-ray crystallography to 2.5 A resolution. Rv2607 has a core domain similar to known PNPOx structures with a flavin mononucleotide (FMN) cofactor. Electron density for two FMN at the dimer interface is weak(More)
The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated(More)
The Mycobacterium tuberculosis protein Rv2377c (71 residues, MW=8.4kDa) has been characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. Rv2377c was the first identified member of the MbtH-like family of proteins. MbtH-like proteins have been implicated in siderophore biosynthesis, however, their precise biochemical(More)