Chang Yub Kim

Learn More
The Mycobacterium tuberculosis rmlC gene encodes dTDP-4-keto-6-deoxyglucose epimerase, the third enzyme in the M. tuberculosis dTDP-L-rhamnose pathway which is essential for mycobacterial cell-wall synthesis. Because it is structurally unique, highly substrate-specific and does not require a cofactor, RmlC is considered to be the most promising drug target(More)
The solution structure of DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase, has been determined by NMR spectroscopy. This 12.7-kDa protein from the hyperthermophilic archaeon Pyrobaculum aerophilum adopts a novel fold consisting of an orthogonal helical bundle with a beta hairpin along one side. A portion of the structure(More)
The Mycobacterium tuberculosis pyrR gene (Rv1379) encodes a protein that regulates the expression of pyrimidine-nucleotide biosynthesis (pyr) genes in a UMP-dependent manner. Because pyrimidine biosynthesis is an essential step in the progression of TB, the gene product pyrR is an attractive antitubercular drug target. The 1.9 A native structure of Mtb pyrR(More)
Surfactant protein C (SP-C), a 3.7-kDa hydrophobic lung-specific protein, is synthesized and secreted by pulmonary type II cells through proteolytic processing of a 21-kDa propeptide (SP-C21) by currently undefined pathways. Previously, we reported the production of a polyclonal antibody against rat SP-C21 (anti-CPROSP-C) using a synthetic peptide as the(More)
Complementation group G of xeroderma pigmentosum (XPG) is one of the most rare and pathophysiologically heterogeneous forms of this inherited disease. XPG patients exhibit varying phenotypes, from having a very mild defect in DNA repair to being severely affected, and a few cases are also associated with the neurological degeneracy and growth retardation of(More)
Ketopantoate hydroxymethyltransferase (KPHMT) catalyzes the first committed step in the biosynthesis of pantothenate, which is a precursor to coenzyme A and is required for penicillin biosynthesis. The crystal structure of KPHMT from Mycobacterium tuberculosis was determined by the single anomalous substitution (SAS) method at 2.8 A resolution. KPHMT adopts(More)
Isolated alveolar type II pneumocytes of the rat have been shown to secrete a 14 to 15 kD protein that has some sequence homology and immunoreactivity with lysozyme. Using immunochemical analyses of rat lung subcellular fractions and 35S metabolic labeling of isolated perfused lung preparations, we studied the subcellular distribution and synthetic pathway(More)
Human flap endonuclease-1 (FEN-1) is a member of the structure-specific endonuclease family and is a key enzyme in DNA replication and repair. FEN-1 recognizes the 5'-flap DNA structure and cleaves it, a specialized endonuclease function essential for the processing of Okazaki fragments during DNA replication and for the repair of 5'-end single-stranded(More)
The crystal structure of the urease gamma subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 A resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate(More)
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the(More)