Learn More
We investigate the applicability of an incompressible diffuse interface model for two-phase incompressible fluid flows with large viscosity and density contrasts. Diffuse-interface models have been used previously primarily for density-matched fluids, and it remains unclear to what extent such models can be used for fluids of different density, thereby(More)
In this paper, a solution-adaptive algorithm is presented for the simulation of incompressible viscous flows. The framework of this method consists of an adaptive local stencil refinement algorithm and 3-points central difference discretization. The adaptive local stencil refinement is designed in such a manner that 5-points symmetric stencil is guaranteed(More)
A novel immersed boundary velocity correction–lattice Boltzmann method is presented and validated in this work by its application to simulate the two-dimensional flow over a circular cylinder. The present approach is inspired from the conventional immersed boundary method (IBM). In the conventional IBM, the effect of rigid body on the surrounding flow is(More)
A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other(More)
The Hadamard and SJT product of matrices are two types of special matrix product. The latter was first defined by Chen [1]. In this study, they are applied to the differential quadrature (DQ) solution of geometrically nonlinear bending of isotropic and orthotropic rectangular plates. By using the Hadamard product, the nonlinear formulations are greatly(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t A version of immersed boundary-lattice Boltzmann method (IB-LBM) is(More)
a r t i c l e i n f o a b s t r a c t In this work, a simple distribution function-based gas-kinetic scheme for simulation of viscous flows is presented. The work applies the finite volume method to discretize the governing differential equations, and inviscid and viscous fluxes at the cell interface are evaluated simultaneously by local reconstruction of(More)