Learn More
Traumatic brain injury (TBI) remains a major public health problem globally. Presently, there is no way to restore cognitive deficits caused by TBI. In this study, we seek to evaluate the effect of statins (simvastatin and atorvastatin) on the spatial learning and neurogenesis in rats subjected to controlled cortical impact. Rats were treated with(More)
OBJECT This study was designed to investigate the neuroprotective properties of recombinant erythropoietin (EPO) and carbamylated erythropoietin (CEPO) administered following traumatic brain injury (TBI) in rats. METHODS Sixty adult male Wistar rats were injured with controlled cortical impact, and then EPO, CEPO, or a placebo (phosphate-buffered saline)(More)
Biomechanical properties of cells yield important information on the disease state of cells such as transformation and metastasis. Screening of cells based on their biomechanical properties provides rapid tools for label-free diagnosis and staging of cancers. However, existent single-cell techniques for measuring biomechanical properties suffer from low(More)
The AMP-activated protein kinase (AMPK), an abc heterotrimeric enzyme, has a central role in regulating cellular metabolism and energy homeostasis. The a-subunit of AMPK possesses the catalytic kinase domain, followed by a regulatory region comprising the autoinhibitory domain (AID) and a-linker. Structural and biochemical studies suggested thatAID is(More)
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had(More)
Electroporation has been widely accepted as an important tool for the delivery of exogenous molecules into cells. Previous mechanistic studies have been carried out by observing either the average behavior from a large population of cells or the response from a small number of single cells. In this study, we demonstrated a novel microfluidic method with(More)
Droplet-based microfluidics has raised a lot of interest recently due to its wide applications to screening biological/chemical assays with high throughput. Despite the advances on droplet-based assays involving cells, gene delivery methods that are compatible with the droplet platform have been lacking. In this report, we demonstrate a simple microfluidic(More)
The manipulation of cells inside water-in-oil droplets is essential for high-throughput screening of cell-based assays using droplet microfluidics. Cell transfection inside droplets is a critical step involved in functional genomics studies that examine in situ functions of genes using the droplet platform. Conventional water-in-hydrocarbon oil droplets are(More)