Chang Bin Du

Learn More
Although both tooth enamel and bone are composed of organized assemblies of carbonated apatite crystals, enamel is unusual in that it does not contain collagen nor does it remodel. Self-assembly of amelogenin protein into nanospheres has been recognized as a key factor in controlling the oriented and elongated growth of carbonated apatite crystals during(More)
Amelogenin is a proline-rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self-assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary-secondary structure and self-assembly of(More)
Osteoblast differentiation and extracellular matrix production are pivotal processes for implant osseointegration or bone tissue engineering. We hypothesized that a biomimetic coating on titanium surfaces, consisting of apatite and amelogenin, would promote such processes. Human Embryonic Palatal Mesenchymal pre-osteoblasts were used as a model for the(More)
Amelogenin, the major extracellular enamel matrix protein, plays critical roles in controlling enamel mineralization. This generally hydrophobic protein self-assembles to form nanosphere structures under certain solution conditions. To gain clearer insight into the mechanisms of amelogenin self-assembly, we first investigated the occurrences of secondary(More)
We recently reported the remarkable spontaneous self-assembly and hierarchical organization of amelogenin 'microribbons' and their ability to facilitate oriented growth of apatite crystals in vitro. In a letter of correction we communicated the finding that the X-ray diffraction pattern reported in our original report was that of cellulose contaminant and(More)
Organic matrix degradation and crystal maturation are extracellular events that occur simultaneously during enamel biomineralization. We hypothesized that enamel proteases control amelogenin-mineral interaction, which, in turn can affect crystal nucleation, organization, and growth. We used a recombinant amelogenin (rP172), a homolog of its major cleavage(More)
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that play a pivotal role in controlling the oriented and elongated growth of highly ordered apatitic crystals during enamel biomineralization. However, the mechanisms of amelogenin-mediated mineralization have not yet been fully elucidated. Here(More)
Enamel extracelluar matrix components play vital roles in controlling crystal nucleation and growth during enamel formation. We investigated the interaction between the 32 kDa enamelin fragment and amelogenin using immunochemical and biophysical methods. Immunoprecipitation studies revealed that the 32 kDa enamelin and amelogenin eluted together from a(More)
Recently, we used native amelogenins extracted from developing pig enamel to examine the combined effect of fluoride and amelogenins on the growth of octacalcium phosphate (OCP) and apatite crystals. The purpose of the present study was to investigate this combined effect using a highly purified recombinant amelogenin. We applied porcine amelogenin (rP172)(More)
Tooth regeneration presents many challenges to researchers in the fields of biology, medicine and material science. This review considers the opportunities for biomedical material research to contribute to this multidisciplinary endeavor. We present short summaries and an overview on the collective knowledge of tooth developmental biology, advances in(More)