Chandrashekar Adiga

  • Citations Per Year
Learn More
The notion of strongly quotient graph (SQG) was introduced by Adiga et al. (2007). In this paper, we obtain some better results for the distance energy and the distance Estrada index of any connected strongly quotient graph (CSQG) as well as some relations between the distance Estrada index and the distance energy. We also present some bounds for the(More)
In this paper we give two integral representations for the Ramanujan’s cubic continued fraction V (q) and also derive a modular equation relating V (q) and V (q). We also establish some modular equations and a transformation formula for Ramanujan’s theta-function. As an application of these, we compute several new explicit evaluations of theta-functions and(More)
where df{n) denotes the number of divisors of n, d = i (mod 4). In literature there are several proofs of (1) and (2). For instance, M. D. Hirschhorn [7; 8] proved (1) and (2) using Jacobi's triple product identity. S. Bhargava & Chandrashekar Adiga [4] have proved (1) and (2) as a consequence of Ramanujan's ^ summation formula [10]. Recently R. Askey [2](More)
In this paper we define extended corona and extended neighborhood corona of two graphs G1 and G2, which are denoted by G1 • G2 and G1 ∗ G2 respectively. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, we give methods to construct infinite families of integral graphs, Laplacian integral graphs and(More)
Let G be a simple graph and let its vertex set be V (G) = {v1, v2, ..., vn}. The adjacency matrix A(G) of the graph G is a square matrix of order n whose (i, j)-entry is equal to unity if the vertices vi and vj are adjacent, and is equal to zero otherwise. The eigenvalues λ1, λ2, ..., λn of A(G), assumed in non increasing order, are the eigenvalues of the(More)
Recently, the authors have established a large class of modular relations involving the Rogers-Ramanujan type functions J(q) andK(q) of order ten. In this paper, we establish further modular relations connecting these two functions with Rogers-Ramanujan functions, Göllnitz-Gordon functions and cubic functions, which are analogues to the Ramanujan’s forty(More)