Chandrasekhar Nataraj

Learn More
This paper is concerned with the optimization of the cardiopulmonary resuscitation (CPR) procedure, which plays a critical rule in saving the life of patients suffering from cardiac arrest. In this paper, we define the performance index for optimization using the oxygen delivery. A model developed earlier is used to calculate the oxygen delivery through(More)
OBJECTIVE Periventricular leukomalacia (PVL) is part of a spectrum of cerebral white matter injury which is associated with adverse neurodevelopmental outcome in preterm infants. While PVL is common in neonates with cardiac disease, both before and after surgery, it is less common in older infants with cardiac disease. Pre-, intra-, and postoperative risk(More)
OBJECTIVE The objective of Part II is to analyze the dataset of extracted hemodynamic features (Case 3 of Part I) through computational intelligence (CI) techniques for identification of potential prognostic factors for periventricular leukomalacia (PVL) occurrence in neonates with congenital heart disease. METHODS The extracted features (Case 3 dataset(More)
This paper presents a novel application of particle swarm optimization (PSO) in combination with another computational intelligence (CI) technique, namely, proximal support vector machine (PSVM) for machinery fault detection. Both real-valued and binary PSO algorithms have been considered along with linear and nonlinear versions of PSVM. The time domain(More)
This paper is concerned with computational modeling of a severe congenital defect called Hypoplastic left heart syndrome (HLHS) that is the most common cardiac malformation with the highest likelihood of deaths in newborns. A lumped parameter model of the HLHS circulation has been developed to study the hemodynamic variables in the various sections of the(More)
This paper is concerned with the prediction of the occurrence of periventricular leukomalacia (PVL) that occurs in neonates after heart surgery. The data which is collected over a period of 12 hours after cardiac surgery contains vital measurements as well as blood gas measurements with different resolutions. Vital data measured using near-inferred(More)
OBJECTIVE In this paper a new nonlinear system identification approach is developed for dynamical quantification of cardiovascular regulation. This approach is specifically focused on the identification of the heart rate (HR) baroreflex mechanism. The principal objective of this paper is to improve the model accuracy in the estimation of HR by proposing a(More)
SUMMARY An efficient, simple, and practical real time path planning method for multiple mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field(More)